

Osservatorio Astronomico di Trieste Astronomical Observatory of Trieste

Neutron-Capture elements with HRMOS

Gabriele Cescutti in collaboration with Mariagrazia Franchini & Federico Rizzuti

Why neutron capture elements?

Most of nc elements, not easy to be measured

And if you want to measure bismuth... wait for CUBES

Why neutron capture elements?

Mg: alpha-element

Bonifacio+12

Arcetri Observatory, 19th October 2021

Sneden+08

Neutron capture elements: r-s process

The elements beyond the iron peak (A>60) are manly formed through neutron capture on seed nuclei (iron and silicon).

Two cases:

s-proce	ess Dif	r-p	r-process		
$\tau_{\beta} <<$	τ_{c}	Different proc	ess path	τ	$\tau_{\beta} >> \tau_c$
			N = 82	Elemental breakdown r s	
		Nd	142 s	42% 58%	
		Pr	141 <i>s</i> , <i>r</i> 100%	51% 49%	
	Ce		140 <i>s</i> , <i>r</i> 88.5%	42 r 19% 81%	
	La		139 <i>s,r</i> 99.9%	25% 75%	
	Ва	134 135 136 s s,r s 2.4% 6.6% 7.9%	137 138 s,r s,r 11.2% 71.7%	15% 85%	
p	Cs	133 <i>s,r</i> 100%		85% 15%	
	128 129 130 1 S S,r S S 2 1.9% 26.4% 4.1% 21	131 132 134 s,r s,r 1.2% 26.9% 10.4%	136 <i>r</i> 8.9%	80% 20%	
Dbservatory, 19th October 202	Si Drocess Dath				

Arcetri

Neutron capture elements

from Truran 1981 to ~8 years ago

Stochastic chemical evolution models

Problem: Neutron capture elements present a spread alpha elements do not

Stochastic chemical evolution models

Solution:

The volumes in which the ISM is well mixed are discrete. Assuming a SNe bubble as typical volume with a low regime of star formation the IMF is not fully sampled.

This promotes spread among different volumes if nucleosynthesis of the element is is different among different SNe,

Stochastic chemical evolution models

Problem: Neutron capture elements present a spread alpha elements do not

Solution: The volumes in which the ISM is well mixed are discrete. Assuming a SNe bubble as typical volume with a low regime of star formation the IMF is not fully sampled.

This promotes spread among different volumes if nucleosynthesis of the element is is different among different SNe,

0.5

n

-0.5

0.5

[Ti/Fe]

Stochastic model for Ba in the Galactic halo

We run the stochastic model (based on Cescutti '08) with these yields for the Ba production:

10% of all the massive stars produce 8 10⁻⁶ Msun of Ba

Stochastic model for Ba in the Galactic halo

We run the stochastic model (based on Cescutti '08) with these yields for the Ba production:

10% of all the massive stars produce 8 10⁻⁶ Msun of Ba

data from in Placco+14 Hansen+12 Hansen+16 Cescutti+16

Stochastic model for Ba in the Galactic halo

We run the stochastic model (based on Cescutti '08) with these yields for the Ba production:

10% of all the massive stars produce 8 10⁻⁶ Msun of Ba

We can reproduce the [Ba/Fe] spread...

For Sr yields: scaled Ba yields according to the r-process signature of the solar system (Sneden et al '08)

Puzzling result for the "heavy to light" n.c. element ratio

For Sr yields: scaled Ba yields according to the r-process signature of the solar system (Sneden et al '08)

Puzzling result for the "heavy to light" n.c. element ratio

It is impossible to reproduce the data, assuming only the r-process component, enriching at low metallicity. (see Sneden+ 03, François+07, Montes+07)

Puzzling result for the "heavy to light" n.c. element ratio

For Sr yields: scaled Ba yields according to the r-process signature of the solar system (Sneden et al '08)

It is impossible to reproduce the data, assuming only the r-process component, enriching at low metallicity. (see Sneden+ 03, François+07, Montes+07)

Another ingredient (process) is needed to explain the neutron capture elements in the Early Universe!

Low metallicity and rotating massive stars

Frischknecht et al. 2012, 2016 (self-consistent models with reaction network including 613 isotopes up to Bi)

Low metallicity and rotating massive stars

Frischknecht et al. 2012, 2016 (self-consistent models with reaction network including 613 isotopes up to Bi)

Rotating massive stars can contribute to s-process elements!

Low metallicity and rotating massive stars

Frischknecht et al. 2012, 2016 (self-consistent models with reaction network including 613 isotopes up to Bi)

Rotating massive stars can contribute to s-process elements!

Can they explain the puzzles for Sr and Ba in halo?

s-process from rotating massive stars

+ an r-process site (the 2 productions are not coupled!)

Cescutti et al. (2013) Cescutti & Chiappini (2014)

s-process from rotating massive stars

+ an r-process site (the 2 productions are not coupled!)

s-process from rotating massive stars

+ an r-process site (the 2 productions are not coupled!)

Cescutti et al. (2013) Cescutti & Chiappini (2014)

Confirmed in Rizzuti et al. (2019) adopting Limongi&Chieffi18

see also Prantzos et al. 2018

Data+stochastic modelling

assuming Limongi&Chieffi18 yields with 3 rotational velocities (300km/s, 150km/s and 0 km/s) + interpolation

 $v_{rot}([Fe/H]) \propto e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

CAVEAT The only possible answer?

Another possible solution is the production of + a weak r-process (not able to produce all the elements up to thorium) + a main r-process

Wanajo 2013, r-process production in proto neutron star wind

Isotopic ratio for Ba

3 stars with a R~100'000 & S/N~900 with UVES at VLT

"normal" value high R \sim 30'000 high S/N ~ 80-100

Arcetri Observatory, 19th October 2021

See results

Cescutti and Chiappini (2014)

Isotopic ratio for Ba

+ES+

3 stars with a R~100'000 & S/N~900 with UVES at VLT

"normal" value high R \sim 30'000 high S/N ~ 80-100

in halo stars.

Challenging

See results

Cescutti and Chiappini (2014)

Isotopic ratio for Ba

G. Cescutti^{1,2,3}, C. Morossi¹, M. Franchini¹, P. Di Marcantonio¹, C. Chiappini⁴, M. Steffen⁴, M. Valentini⁴, P. François^{5,6}, N. Christlieb⁷, C. Cortés^{8,9}, C. Kobayashi¹⁰, and E. Depagne¹¹

Object	RA (J2000.0)	Dec (J2000.0)	B (mag)	G (mag)	Exp. time (s)	$\langle S/N \rangle$	Obs. date (UT)	No. of exps.
HD 4306	00 45 27	-09 32 44	9.71	8.76	2400 s	250	19th Oct. 2016	3
HD 6268	01 03 18	-27 52 54	8.89	7.80	1600 s	350	19th Oct. 2016	2
				2	2	1	 1	iigh S/N ~
	-5) -4			-2	-1		

Arcetri Observatory, 19th October 2021

to Gallaghe

Synthesis of calcium lines

Synthesis of the barium line with no hyperfine splitting effects

Synthesis of barium lines with hyperfine splitting effects

Ba II	$E_{\rm low} = 0.00 {\rm eV} \log$	s-process	r-process	
	Wavelength (Å)	Strength	fraction	fraction
¹³⁴ Ba			0.02	0.00
	4934.075	1.000		
¹³⁵ Ba			0.03	0.40
	4934.034	0.3125		
	4934.045	0.0625		
	4934.093	0.3125		
	4934.104	0.3125		
¹³⁶ Ba			0.10	0.00
	4934.075	1.000		
¹³⁷ Ba			0.09	0.32
	4934.029	0.3125		
	4934.041	0.0625		
	4934.096	0.3125		
	4934.107	0.3125		
¹³⁸ Ba			0.76	0.28

Synthesis of barium lines

with hyperfine splitting effects

An empirical method

to transform the lines of HD 4306 in those of HD6268

a scaling is applied in the velocity space

$$\Delta v^{\text{fake-HD 6268}} = b \cdot \Delta v^{\text{HD 4306}} \sqrt{\frac{T_{\text{eff}}^{\text{HD6268}}}{T_{\text{eff}}^{\text{HD4306}}}} \frac{V_{\text{mac}}^{\text{HD6268}}}{V_{\text{mac}}^{\text{HD4306}}}.$$

where b is determined using the synthetic spectra with an s-process composition to match the broadening

Conclusions

Most of nc elements need HR (always necessary for isotopic signatures)

The step forward is to apply statistical methods to data + chemical evolution models

 \longrightarrow More Data with HR

Present and Future surveys are providing catalogues of stars but the follow up of candidate stars will need a HRMOS on a 8meter class telescope