
KUBERNETES: GENERAL CONCEPT AND
ITS USE IN THE CONTEXT OF SKA

Matteo Di Carlo INAF - OAAB

About me

 Matteo Di Carlo (matteo.dicarlo@inaf.it)

 Working for INAF-OAAB since 2014

 Since 2015 in the SKA project

 Software engineer, in SKA part of the system team and coordinator of
the cop-tango community

 Certified Kubernetes Administrator

 https://orcid.org/0000-0002-3903-9637

Kubernetes Concepts

Open-source system for automating deployment, scaling, and management of
containerized applications.
 Pod
 Deployment
 StatefulSet
 Service
 Ingress
 ConfigMaps
 Persistant volumes
 …

SKA Project

 International effort to build two radio interferometers in South Africa
and Australia

 One Observatory monitored and controlled from the global
headquarters (GHQ) based in the United Kingdom at Jodrell Bank

 Software development process is Agile
Mainly incremental and iterative

Many teams (17) including a specialized team (known as system team)
devoted to support the continuous Integration, test automation and
continuous Deployment.

Safe Agile development

Capability

Feature

Story

Implementation
time

2 weeks

3 months

3+ months

~20 teams

SKA infrastructure

 Two openstack virtualization available, one in Portugal (EngageSKA)
another one in UK (STFC)

 Composed by a number of «services»:
 kubernetes

 Prometheus and Grafana

 Rock/ceph

 Elasticsearch

Gateway and VPN

 Nexus

 Archiver DB (MariaDB/TimescaleDB)

Deployment
view

Credit: P.Harding (SKAO)

Kubernetes

Credit: P.Harding (SKAO)

TANGO-controls

Containerization

 SKA == set of elements == a set software modules

 For each module there is one repository

 For each repository there is one docker image
 convenient way to package up applications and preconfigured server

environments

ska-tango-images: containerized environment for
TANGO-controls application

Debian
buster-slim

TANGO
dependencies

TANGO C++ TANGO Java

TANGO Rest

TANGO python
builder

SKA Module 0 SKA Module 1 SKA Module n…

extend

Docker image

TANGO
DatabaseDS

MAX4 TANGO
Dsconfig

TANGO itango

TANGO Panic

TANGO test

TANGO VNC

TANGO Panic
GUI

TANGO python
runtime

TANGO Jive
TANGO

Pogo

Kubernetes and Helm

 Kubernetes (k8s) for container orchestration (kubernetes.io)
 Service == TANGO Device Server

 Helm for packaging SKA k8s applications (helm.sh)
 Tool for managing Kubernetes charts
 Chart is a package of pre-configured Kubernetes resources (set of

information for running a Kubernetes application)

For each SKA element there must be an helm chart for running it in k8s!
Use of Makefiles for lifecycle management (one command for build

images, start application using helm, test application and clean)!

Integration with Helm

 Helm has the concept of dependency
 An helm chart can have one or more sub-charts

 The integration of SKA elements can be done with this concept

Element
B

Depends-on

Helm
Chart

KEY

Element
D

Element E

Element
C

Element
G

Element F

Element
A

Helm sub-charts Architecture

 Operational aspects of using dependencies: the sub-charts are
 aggregated into a single set; then

 sorted by type followed by name; and then

 created/updated in that order.

For every SKA element,
there is at least an
umbrella chart for
integration testing

A

C
B D

G
F

EUMBRELLA

B

D

F

UMBRELLAA

G

UMBRELLA

B

ska-tango-base chart

 The ska-tango-base chart installs/defines the basic TANGO ecosystem in
Kubernetes composed by the following services:
 tangodb: mysql database used to store configuration data used at startup of a

device server.

 databaseds: device server providing configuration information to all other
components of the system as well as a runtime catalog of the components/devices.

 itango: an interactive Tango client.

 vnc: debian environment with x11 server and vnc/novnc installed on it.

 tangorest: rest api for the TANGO eco-system.

 tangotest: TANGO test device server.

ska-tango-util chart

 Library chart which helps other application chart defines TANGO
device servers. In specific for each device server defined, it defines
the following k8s resources:
 a job for the initialization of the entry in the tangodb

 a service

 a statefulset

 a role, rolebinding and a service account for waiting for the job to be finish
in an init container

CI-CD

 When many parts of the project are developed independently for a
long period of time (weeks or longer),

 Code base and build environments diverges

 When changes are integrated
Weeks in verifying that everything works

 Developers spend time in solving bugs introduced months earlier

CI-CD

 Continuous integration (CI)
 Set of development practices that requires developers to integrate code into a

shared repository several times a day.
 Each check-in is then verified by an automated build, allowing teams to detect

problems early.
 Continuous delivery (CD)
 Automate the delivery of new releases of software
 Deployment has to be predictable and sustainable
 The code must be in a deployable state
 Testing needs to cover enough of your codebase.

 Continuous deployment (CD)
 One step further: every single commit to the software that passes all the stages of

the build and test pipeline is deployed into the production environment

Gitlab Model

Environments allow control of
the continuous deployment done

in k8s

Gitlab runner

Credit: P.Harding (SKAO)

ska-tango-examples

 Demonstrates how to structure an project that provides some simple Tango
devices coded in PyTango with CICD capabilities with Kubernetes and all
SKA infrastructure

 Many authors:
 Stewart Williams
 Matteo Di Carlo
 Matteo Canzari
 Piers Harding
 Anton Joubert
 and many more https://gitlab.com/ska-telescope/ska-tango-examples/-

/graphs/master

unit-testing

 Encapsulated in the Makefile (make unit_test)

 It uses pytest with no bdd

 It requires the TANGO-controls framework and pytango to work in a
local laptop (tested on ubuntu 20.04 and windows wsl ubuntu 20.04)

 It is also possible to run them in a simple container (make
pipeline_unit_test)

 It uses pytest fixture and a factory pattern for creating the right
device context

ska-tango-examples helm chart

 In order to install the examples, two charts have been created: one
called ska-tango-examples which is the real application and the
umbrella chart, called test-parent, used for testing.

 The ska-tango-examples uses the ska-tango-base chart for setting up
the TANGO eco-system (only mysql database and databaseds
device) and the ska-tango-util library chart which helps in the
definition of the TANGO device servers

Steps to installation

 Build the image with make build

 Install the chart with make install-chart

 Wait for the pods to be running with make wait

 Watch what’s happening with make watch

Development workflow with Makefile

 The usual workflow is:
 start pogo (make start_pogo) and create the skeleton in the right folder;
 develop your device
 unit-test very often with make unit_test
 once the device is ready, add its definition into a file in the data folder of

the ska-tango-examples chart
 Install it with make install-chart and check it’s working with make wait
 Test the new device with make test
 In case check the device with jive with make install-chart JIVE=true
 Uninstall when done

ska-tango-examples gitlab pipeline

 It includes the following stages:
 build (image and wheel)

 lint (python source code and chart)

 test (with and without the TANGO eco-system)

 pages (for test information)

 publish (for helm chart)

 .post (ci-metrics, badges, etc.)

Generic development workflow

 For each repo and for each commit (!):
 install the (umbrella) chart in an isolated namespace

 wait for every container to be running

 For the tests:
 Create a k8s pod (a container) in the isolated namespace

 Run pytest inside the above pod

 Return the tests results

 uninstall the (umbrella) chart

Gitlab pipeline - runtime

Credit: U. Yilmaz (SKAO)

Gitlab pages

 Store testing and coverage information and everything else important

 Pipeline artefacts are used to generate metrics and badges

 https://developer.skao.int/en/latest/tools/ci-cd/continuous-
integration.html#automated-collection-of-ci-health-metrics-as-part-of-
the-ci-pipeline

Monitoring the performance of the devices

Monitoring the performance of the devices

Logging

 https://k8s.stfc.skao.int/kibana/app/discover

 Example query:
 kubernetes.namespace : "ci-ska-tango-examples-7ae62e9d" and

kubernetes.labels.component: "theexample-test"

Elasticsearch - kibana

Demo

Quality aspects: Marvin

 Gitlab is able to send webhook when an event happen (i.e. a
developer creates a branch)

 Marvin is an automation tool build with the FastAPI framework that is
able to receive gitlab hook and add comment according to some
checks performed.

 For example, for each branch we check that:
 Documentation is updated,

 There’s an approval from a reviewer,

 There’s a like between the name of the branch and the story code
Running inside

k8s as any other
ska applications!

Nexus and the validation framework

 Based on celery (distributed system to process vast amounts of
messages with tasks – processes always running), mongodb (for
storaging the validations made) and redis (for messages)

 When an artefact is pushed in Nexus, it triggers a web hook received
by one of the celery workers that checks:
 Naming Convention

 Tag Convention

Metadata

We are currently working on a security/vulnerability check
Running inside

k8s as any other
ska applications!

Conclusion

 The SKA infrastructure devloped provides a number of services such as:
 horizontal scalability (thanks to k8s)
 CI-CD (thanks to k8s and gitlab)
 Automatic testing
 Isolated environment for testing
 Fast building and release docker images and helm charts only if tests passes

 Monitoring (thanks to prometheus)
 Logging (thanks to elasticsearch)
 Storage (thanks to ceph)
 Security
 Central artefact repository
 Quality aspect with Marvin and the validation framework

