

Italian Involvement and Perspectives

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

I. Prandoni, M. Dolci, J. Monari, A. Navarrini, A. Possenti

The SKA Project - Outline

• INAF BITUTO NASIONALE BITUTO NASIONALE CON ASTROBUTOR CON ASTROB

This presentation:

1) General overview and institutional/scientific activities: Isabella Prandoni

2) SRC (SKA Regional Centers):

Andrea Possenti

3) SKA-OMC : Mauro Dolci see also scheda MeerKAT+ for evolution of LMC-Dish: Corrado Trigilio

4) AIP-PAF:

5) SKA-LFAA:

Alessandro Navarrini

Jader Monari

The SKA Observatory in a nutshell

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021 **3**

Italian Contribution: Science

Goal: maximal scientific return in the exploitation of SKA

14 SKA Science Working Groups: 93 IT Members (9%) in 13 SWG - 6 Chairs - 19 IT with Coordination Roles in 9 SWG – 15 INAF structures + 14 IT Universities (overall 7 FTE/yr 2021-2023)

• INAF

SKA-Italy: Organization

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021 **5**

• INAF

SKA-Italy: Roadmap

[Sept. 2019 - Available at INAF UTG-II web page]

- SWOT analysis \rightarrow identify opportunities/critical areas/ strengths/threads

Recommend coordinated actions:

Get prepared for SKA scientific exploitation / maximise leading roles in future SKA KSPs

Actions based on Roadmap recommendations:

- >2019 Development of Italian SKA Regional Center (coord. by UTG-II HPC/Data Advisor)
 [opportunity: develop in house data handling/analysis expertise]
- >2020 INAF involved in MeerKAT+ (coord. by UTG-II SKA-MID precursors Advisor) [weakness: facilitate access to SKA-MID precursors]
- >2021 National Postdocs dedicated to SKA [build SKA generation]

An Italian Roadmap towards the SKA

by the Italian SKA Board I. Prandoni, D. Fierro, G. Bernardi, G. Brunetti, R. Cassano, G. Comoretto, M. Dolci, J. Monari,

R. Cassano, G. Comoretto, M. Dolci, J. Monari, A.Navarrini, A. Possenti, R. Smareglia, C. Trigilio, G. Umana, T. Venturi

and the Head of the INAF-UTG-II Radioastronomy F. Govoni

Release 1.0 - September 13th, 2019

SKA in numbers

COST (2020 €)

SKA-Italy: budget & science support

- Funds (<2020): 22 Meu
 - SKA-MIUR / Astronomia Industriale SKA/CTA
 - IT share of SKA Org. + technology + PRIN SKA/CTA 2016
- Funds >2020:
 - IT share of IGO: 120 Meu
 - SKA construction & running costs
 - DM450 (SKA/CTA)
 - > support SKA-related activities, incl. Italian SRC and science

Work in progress: Development of Scientific Roadmap

- ✤ regular funding over the next >10 years
- ♦ of the order of \gtrsim 10-15% of IGO IT share

7

SKA REGIONAL CENTER (SRC)

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Andrea Possenti

The scope of the SRC network

July 2016: the SKA Board deliberated:

"The SKA Observatory will coordinate a network of SKA Regional Centres that will provide the data access, data analysis, data archive and user support interfaces with the user community"

November 2018: the SKA Board deliberated:

"The mission of the SRC Steering Committee (SRC-SC) is to define and create a long-term operational partnership between the SKA Observatory and an ensemble of independently-resourced SKA Regional Centres.

The SRC-SC will be superseded in due course by the operational partnership that is formed as a result of its work"

The SRC working groups

INAF member(s)

> WGC	: SRC Network Architecture		
> WG1	: Data Logistics Working Group		Matteo Stagni
> WG2	2: Operations Working Group	Matteo Canzarii, Matteo Di Carlo, Isabella Prandoni, Riccardo Smareglia	
> WG3	3: SW Federated Computing and Data Software	Giuliano Taffoni, Alessandro Costa, Fabio Vitello, Eva Sciacca, Cristina Knapic	
> WG4	I: SW, Science Archive-VO-FAIR		Vincenzo Galluzzi, Alessandra Zanichelli, Cristina Knapic, Marco Molinaro, Franco Tinarelli
> WG5	5: Compute Working Group	Ugo Becciani, Riccardo Smareglia	
> WG6	S: Science User Engagement Co-chair: Andrea	Possenti	Isabella Prandoni, Claudio Gheller, Carlo Baffa,Gianni Comoretto Claudio Codella, Marcella Massardi, Simone Riggi, Mauro Dolci, Paolo Serra
Instrument	Some key software activities developed within INAF		Involvement of INAF scientists
LOFAR	Data working group, Pipelines, Computing Code optimization & profiling, Porting on exascale machines	Fur	ndamental role in order to develop requests and
ASKAP	Caesar: source extraction & parametrization Algorithms to destripe single-dish images Source extraction from combined IR + Radio	ANTIC	IPATE other foreign astro-scientists in ADAPTING to www.for.doing.data.reduction.and.computation.in
MeerKAT HI/continuum data analysis for inteferometric data Pulsar pipelines and schedule optimization		the SKA era	
uGMRT	Optimization of existing pipelines		Total involvement
eMERLIN	Optimization of existing pipelines – combination with JVLA		
JVLA	Optimization of existing pipelines		2.6 FTE/yr for next 3 yrs
Other projects	VisiVo: big astronomical data 3D visualization Distributed data and computer center for SKA		

INAF expected outcomes

1. The identification of a kernel of "modi operandi" in the interactions among the various actors to secure an efficient and always developable science-needs driven system

2. The possibility for the regional communities to obtain access to the system (and keep a role of management/development of that) <u>at the minimum</u> in proportion to the local investments

3. The establishment of a SRC network with a significant pole located in Italy

Tecnopolo in Bologna will host:

- Leonardo 270 PFlops
- ECMWF
- INFN
- CINECA

Needs for the whole network

a)	Data Flow PB/y	r Processing PF	Processing PFlop/s		Network mean speed Gb/s	
ŭ	710	22	22		100	
ġ.						
Je Je	Data (M€/yr)	Processing (M€/yr)	Network	κ (M€/yr)	Personnel (M€/yr)	
At	18	2.4	5		10	

Needs for the INAF pole

Keeping 6% level \rightarrow 12 M€ over 2021/2030 Aimed 10% level \rightarrow 20 M€ over 2021/2030 Basically 0 € until 2020 for a linear growth \rightarrow 0.43 M€ during 2021

Personnel \rightarrow 10-15 FTE/yr to keep a leading role and support an INAF SRC pole

Required skills: in-depth understanding of the data acquisition systems at the 2 SKAO sites, management and development of the complex systems that will oversee the analysis of SKAO data and their archiving, the development of software for the various scientific cases, as well as interaction with national users in the preparation and management of SKA observation programs.

Not easy to find and enrol this kind of personnel

The INAF contribution to the SKA1 Observation Management and Control software development

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

M. Dolci on behalf of the OMC team

Work Organization – SAFe

State: ON obsState: EMPTY AddReceptors: Sub Configure: Sub	mit Configure:	obsState: EMPTY Submit	State: ON AddReceptors:	obsState: EMPTY
AddReceptors: Sub	mit AddReceptors:	Submit	AddReceptors:	Submi
Configure: Sub	mit Configure:			
		Submit	Configure:	Submi
ObsReset Restart Abo	ort ObsReset I	Restart Abort	ObsReset	start Abort
GoToldle	GoToldle		GoToldle	
RemoveReceptors: Sub	mit RemoveReceptors:	Submit	RemoveReceptors:	Submi
RemoveAllReceptors	RemoveAllReceptors		RemoveAllReceptors	
Receptors	Receptors		Receptors	

SKA1 PSS pipeline

Products – A selection

CI/CD practices with the TANGO-controls fra context of the Square Kilometre Array (SKA project	amework in the A) telescope		
Di Carlo M. ^a , Yilmaz U. ^b , Harding P. ^b , Bartolini M. ^b , Le Roux G	. ^c , and Dolci M. ^a		
^a INAF Osservatorio Astronomico d'Abruzzo, Teramo, ^b SKA Organisation, Macclesfield, UK ^c SKA South Africa, SA ABSTRACT The Square Kilometre Array (SKA) project is an international effort to build two rad <u>Africa and Australia to form one Observatory monitored and controlled from the c</u>	Italy SKA Pulsar ^a SKA Time Domai Oss	• Search: Algori C. Baffa ^b on in Team, SKA0 ervatorio di An	Technological Challenges and Best ithms Development behalf of the SKA-TDT-Group ^a O, Jodrell Bank Observatory, Manchester, UK ^b INAF rcetri, Largo E.Fermi 5, Firenze, Italy;
Satisfying wishes for SKA engined meets users' ne Matteo Canzari ^a , Valentina Alberti ^b , Hélder Ribeiro' Hardion ^e	ers: how Taranta eeds °, Ajaykumar Dubey ^d , and	Suite d Vincent	ABSTRACT A radio telescope is a large survey for pulsars both in isolated and r search engine is expected to reach 0.6TeraSamples/sec. For the hese streams, we need a complex search strategy which allows up

^aINAF, Osservatorio Astronomico d'Abruzzo, Teramo, Italy ^bINAF - OATs, Trieste, Italy ^cFCUP - Centro de Investigação em Ciências Geo-Espaciais (CICGE), Portugal ^dPersistem System, Pune, India ^eMaxIV Institute, Lund, Sweden

ABSTRACT

SKA Construction phase we are now in a transition phase that hopefully will prepare us for the next challenge: start building the SKA. One of the targets of this period is to evaluate the suitability of the Taranta (proper Webjive) Suite for creating engineering User Interfaces (UIs). The Taranta suite is a framework that allows the

OMC – Budget and Critical Issues

Effort from INAF:

- Planned 2021-2028 = 35 fte
- Consolidated 2021-2023 = 12.5 fte

Construction budget allocated to INAF (2021-2028): 3.9 M€

Criticalities:

- Some competencies still needed:
- a) a deeper knowledge of virtualization tools (e.g. Docker, Kubernetes)
- b) some aspects of advanced software architectural concepts and tools
- c) advanced large projects management skills.
- Manpower:
- a) team currently at its minimum size
- b) strong need of clever young people to support the overall development
- c) need to have a stable recruitment path for the people structural to this development.

The INAF contribution to the SKA Advanced Instrumentation Programme on Phased Array Feeds (PAF)

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

A. Navarrini on behalf of the INAF PAF team

Phased Array Feed

A PAF receiver is a dense array of antenna elements placed at the focus of a reflector telescope. Each element samples the energy on the focal plane. The output of these elements are combined to form multiple beams on the sky. The direction of these beams is controlled by varying the "weights" of individual PAF elements. Beamshapes and directions are electronically controlled and can be individually optimized over a large frequency band.

PAF receivers provide a wideband multi-pixel "camera" on the sky that achieves a very wide Field-of-View (FoV) with high mapping efficiency, thus enabling to conduct high-sensitivity large-scale radio surveys.

PAF Advanced Instrumentation Programme (AIP)

- PAF technology is not part of SKA1. The SKA Observatory includes a SKA Observatory Development Programme (SODP) of telescope development towards SKA2 for enhancements/extensions of SKA1;
- SKA1-Mid antennas have been designed to incorporate PAF receivers in the future. PAF technology might find application in SKA-Mid;
- The SKA AIP on PAF was established in 2016. Nine international institutions are part of the PAF Consortium, including INAF;
- The SKA AIP on PAF is currently funded by in-kind contributions of the member institutes that are focussed on their own PAF R&D programs with no real focus on SKA PAFs yet;
- PHAROS2 is a PAF developed by the collaboration of five Institutions as part of the SKA AIP on PAFs:

University of Malta

PHAROS2: cryogenic 4-8 GHz PAF with digital beamformer was developed and tested on telescope

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

PHAROS2: cryogenic 4-8 GHz PAF with digital beamformer was developed and tested on telescope

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

INAF PAF technical team

Current and future, period 2021-2023: 11 people from 2 observatories, 4.05 FTEs (average 1.35 FTE/year for the next three years):

Person	INAF Observ.	Role in the project
A. Navarrini	OA Cagliari	Coordinator of PAF activities and system design
P. Ortu	OA Cagliari	Monitor and control and bias electronics
P. Marongiu	OA Cagliari	Mechanical system and cryostat
T. Pisanu	OA Cagliari	Electromagnetic simulations and beam-pattern tests
A. Ladu	OA Cagliari	Design and characterization of RF module
A. Melis	OA Cagliari	Development of digital beamformer
R. Concu	OA Cagliari	Development of digital beamformer
L. Schirru	OA Cagliari	Electromagnetic simulations, beam-pattern tests
R. Nesti	OA Arcetri	Electromagnetic design and antenna coupling
G. Comoretto	OA Arcetri	Development of digital beamformer
Digital engineer (AdR being hired)	OA Arcetri	Development of digital beamformer/RFSoC

In the period 2017-2019, the INAF PAF team included personnel from IRA and OA Catania

Total envelope of INAF PAF personnel from 2017 to 2023: 27 people, 13.90 FTEs

INAF PAF funds

From "Astronomia industriale 2017 (SKA e CTA)" and "Fondo Pluriennale SKA-CTA 2019" :

Year	Beneficiary	Funds [k€]	
2017	INAF-OA Cagliari	75	
2018	INAF-OA Cagliari	75	
2019	INAF-OA Cagliari	75	
2020 2024	INAF-OA Cagliari	95	
2020-2021	INAF-OA Arcetri	45	
Total		365	

Needed funds for the period 2021-2023:

Estimated	Estimated	Estimated
2021	2022	2023
0€	120 k€	120 k€

INAF PAF goals for the period 2021-2023 and beyond

- Develop a demonstrator of a cryogenic PAF with antennas and LNAs integrated in a compact module for extended C-band (3.0-7.7 GHz) based on RFSoC (Radio Frequency System-on-Chip) technology. The instrument will be entirely developed by INAF using state-of-the-art breakthrough technologies.
- Test the demonstrator on a radio astronomy antenna.
- Verify INAF PAF technologies with reduced hardware (a few beams & reduced BW);
- Develop the key technologies, capability and design knowledge for PAF systems enabling to commence a specific SKA PAF design in 2024.

Criticalities

 Need to gain experience on RFSoC technology for future integration with analogue array (commercial RFSoC boards under evaluation not suitable for integration): funds for one digital engineer and for hardware to be confirmed for next two years;

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Jader Monari Italian LFAA Program Manager

INAF STITUTO N

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies

~500 station 30m (256 antennas). Aperture Array Stations 50-350MHz

INAF Audits - May 31st, 2021

History of the INAF participation SKA

CDR SCDR PRR

LFAA

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

• INAF **INAF - LFAA technical group (internal organigram)** Pietro Bolli OAA Antenna & LNA Federico Perini IRA PD Receiver TS то BO Francesco Schillirò OACT **IASF-Mi** Monica Alderighi FL TE **Acquisition System** Jader Monari IRA RM PM NA Gianni Comoretto OAA FW beamforming MT CA PA Marco Schiaffino IRA **Mechanics** Noto Gianni Bernardi IRA Observation

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

Research Contracts (2012-2020)

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

Industrial Contracts (2017-2020)

INGEGNERIA DEI SISTEMI

INAF Audits - May 31st, 2021

Receiver Chain - Technology made in Italy

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

INAF

SKALA4.1A

- Dual-polarized LPDA.
- 20 dipoles: 19 triangular-tooth plus 1 bow-tie at the bottom of the antenna.
- Solid dipoles on the high-frequency elements and wire dipoles on the low-frequency ones.
- 1-degree tilted boom.
- Aluminium-made.
- Electrical connection of the antenna to the ground plane.
- Antenna matched to a single-ended 50-ohm LNA.
- LNA encapsulated in the top-cap of the antenna and connected to a coaxial cable embedded in the antenna booms.

SASE

ENGINEERING

Analogue RFoF link

Tile Processing Module

- Convert analogue optical to electrical signals
- Amplify and bandpass filter ready for digitisation;
- Digitise at 800MS/s and pass to digital processing;
- Manage the clock distribution and the memory storage;
- Digitally process;
- Packetize Data for 100 Gbit/sec data processing;
- Control and monitoring functionality

Firmware

- LFAA firmware used in the iTPM board to
 - Channelize, calibrate and align antenna signals
 - Combine 256 antennas in up to 48 beams
 - Format and transmit beamformed signals to correlator
 - Format and transmit selected signals to calibration server
- Prototype firmware used in AAVS array
- Significant work required for industrial grade final system
- People: 3 persons (1 FTE) INAF, 4 persons (3 FTE) UK

Software

- Low level control software
 - Hardware drivers: developed together with firmware blocks
 - General standalone software, used at AAVS array
 - Control of cabinet and subrack electronics (power management, temperature, cooling)
- Integration of hardware in SKA Low LMC
 - Device software in the Tango Control environment
 - Hardware related problems: antenna pointing, beam management, obsrvation management, calibration strategies
 - Interface with other systems (correlator, telescope manager)
 - Network design and management (SKA as a network defined instrument)

UAV

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

AAVS1

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

AAVS2 & EDA2

2 demonstrators built at MRO site to verify SKA1-low system before construction

EDA2 (2019) 256 MWA dipoles LNA modified for 50-350 MHz 35 m diameter

AAVS2 (end of 2019) 256 SKALA 4.1 log-periodic LNA optimized for full 50-350 MHz 38 m diameter

Aerial view of EDA2 and AAVS2 - Credits: Icrar/Curtin

INAF Audits - May 31st, 2021

Efforts spent

	FTE	FTE partner	Total FTE	Industry	Development	Travel	Total per year
2012-2013	7,64	1,38	9,02	- €	185.000€	20.000 €	205.000€
2013-2014	7,91	1,42	9,33	100.000€	256.000 €	20.000 €	376.000 €
2014-2015	8,00	1,48	9,48	- €	165.000€	49.800 €	214.800 €
2015-2016	9,91	1,33	11,24	589.300€	212.200€	41.000 €	842.500€
2016-2017	11,64	1,30	12,94	227.000 €	153.000€	50.000 €	430.000 €
2017-2018	11,64	1,30	12,94	188.000€	61.000€	60.400 €	309.400 €
2018-2019 (P2 ext)	11,18	1,59	12,77	198.000€	56.000€	60.400 €	314.400 €
2019-2020 (low B)	11,27	1,52	12,79	937.000 €	95.200€	100.000 €	1.132.200 €
2020-2021	10,39	0,91	11,30	687.000 €	96.300€	- €	783.300€
TOTAL	89,57	12,24	101,82	2.926.300 €	1.279.700 €	401.600 €	4.607.600 €

ті	46,85
TD	42,73
Totale INAF	89,57
Altri enti	12,24
Totale Italia	101,82

Exploring the Universe with the world's largest radio telescope

INAF Audits - May 31st, 2021

Activities foreseen

Antenna/LNA

Analysis of the LNAs failures in the field LNA MTBF reliability model Measurements of the LNA operative temperature at MRO Low Freq IP2/IP3 measurement @ MRO NF measurement vs Temperature Finalization and improvement of the LNA noise parameter measurements

• RX

FEM reliability model / qualification of WDM optical source suppliers PreADU fine tuning of LP 350MHz filter Linear / non-linear RF modeling review of the entire receiving chain from LNA to ADC FEM DFM

• SPS

Develop all FW/SW functionalities to control/monitor subrack subsystem Test plan for Subrack (Cabinet integration support/ New Clocks distribution Architecture)

• OBS

Performing regression testing following any new installation or modification happening on site (highest priority)

Support towards the objectives and priorities defined in the: <u>SKA Station Calibration Task</u> <u>Phase 2/3 Program Objectives</u> document.

Opportunity

ITF or CDF...

- I'INAF ha massima probabilità di avere attribuita dal Board di SKA la responsabilità dello SKA System Integration Centre (pagato da SKAO su territorio italiano). Citando le parole di Phil Diamond: "*SKA will require a SKA System Integration Centre (SSIC), similar to the Front-End Integration Centres for ALMA, which were located in Japan, USA and UK. Current planning calls for a single SSIC. Italy would be well-placed to provide such a facility, which would be funded by the SKAO. The SSIC would require access to laboratory space; cryogenic test facilities; RF, fibre and digital test equipment and the ability to run end to end tests of SKA elements to ensure they function correctly before shipping them to South Africa and/or Australia to be deployed. Italian industry has a strong record in system integration*"

Weakness

- Given the number of activities in which INAF is involved in SKA-LFAA and given the duration of the project, it is first of all necessary to plan actions for the **transfer of "generational" knowledge** and to carry out an effective turnover. Colleagues close to retirement need an overlapping of at least 1 year for the transfer of know-how and to allow the youngest to take over.
- A strong investment must also be made in the **observation / verification group** (the one that works closest to the instrument and on the raw data for the verification of the requirements). These personnel units, which are a technical / scientific hybridization, are very rare and sought after by the various communities and will be essential in the commissioning phase of SKA1 at all stages.
- Another highly sought after figure are **firmware / software programmers and RF designers** who are now fundamental fields for modern radio technologies. As soon as they graduate, they are absorbed by companies attracted to more attractive positions than those that INAF can offer to a new employee.
- Finally, the now usual criticality in our work and a big bottleneck for the development of very dynamic projects as is the demand of these times, is **the administration too slow** for the acquisitions and the issuing of calls for services due to the bureaucracy too complicated.

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

www.skatelescope.org

QUADE KUOMETOF AL

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

www.skatelescope.org