Rivelazione diretta di materia oscura con rivelatori allo xenon in doppia fase

XENON

Andrea Molinario

The XENON Collaboration

XENON

180 scientists 27 institutions 11 countries

Direct dark matter detection

XENON

WIMPs are candidates to dark matter particles

Direct dark matter detection

WIMPs expected to induce nuclear recoils in a particle detector

Total event rate as low as 10 / (ton*y)

Need for a low background environment

Detectors located underground

Audizioni schede INAF RSN4 -- 26/5/2021

The LXe TPC legacy

XENON

Best technology to search for WIMP dark matter

Dual-phase Xenon TPC

XENON

High density, self-shielding

Good scintillator

No long-living radioactive isotope **Time Projection Chamber**

3D position

ER/NR discrimination

Multiple scatter rejection

Low energy threshold

Scalable to multi-ton

Dual-phase Xenon TPC

Ideal for WIMP and rare processes search

Dual-phase Xenon TPC

XENON

Ideal for WIMP and rare processes search

The XENON Project @ LNGS

XENON

2005-2007	2008-2016	2012-2018	2020-2025	2027-
15 kg	161 kg	3200 kg	8400 kg	50 tonnes
15 cm	30 cm	96 cm	150 cm	260 cm

The XENON Project @ LNGS

Summary of XENON1T results

XENON

TECHNICAL ANALYSIS PAPERS PRD 99, 112009 PRD 100, 052014

XENONnT

278.8 live days (Nov 2016 - Feb 2018)

Audizioni schede INAF RSN4 -- 26/5/2021

12

WIMP search

XENON

XENONnT

1 tonne-year

1.3 t fiducial LXe mass

Total exposure for the main WIMP search

278.8 live days (Nov 2016 - Feb 2018)

Audizioni schede INAF RSN4 -- 26/5/2021

World leading constraints on WIMP-nucleon interaction

WIMP search

XENON

Low-Energy ER search

(76 ± 2) events / (tonne*year*keV_{ee}) in [1,30] keV_{ee} Lowest ever achieved in this energy range!

Excess observed in the [1-7] $\mathrm{keV}_{\mathrm{ee}}$ energy range

285 events observed vs 232 ± 15 expected from best fit (3.3 σ fluctuation – *naive estimate*)

Low-Energy ER search

26 TRITIUM BACKGROUND

Fitted concentration: $(6.2\pm2.0) \times 10^{-25}$ mol/mol ³H/Xe We don't expect that much ³H from liquid purity Very difficult to confirm or exclude such a tiny abundance

3.4 σ **SOLAR AXIONS**

Non-null coupling to electrons \rightarrow ABC and/or Primakoff Strong tension with astrophysical constraints Axions+³H favoured over ³H-only at 2.1 σ

3.2 σ NEUTRINO MAGNETIC MOMENT μ_v

$$\begin{split} \mu_{\rm v} &= [1.4,\,2.9] \times 10^{-11} \ \mu_{\rm B} \\ \mu_{\rm v} &> 10^{-15} \ \text{would imply neutrinos to be Majorana fermions} \\ \text{Tension with astrophysical constraints} \end{split}$$

3.0 BOSONIC DARK MATTER

Including pseudo-scalar (ALPS) and vector (dark photons) bosons Most restrictive constraints to date set

Audizioni schede INAF RSN4 -- 26/5/2021

The XENON Project @ LNGS

Upgrade to XENONnT

XENON

XENONnT

Audizioni schede INAF RSN4 -- 26/5/2021

XENONNT @ LNGS

Water tank 700 t ultra-pure water **Cherenkov Muon** Veto 84 PMTs

> Cryostat TPC

Neutron Veto

Upgrade to XENONnT

- Total 8.4 t LXe
- 5.9 t in TPC
- ~ 4 t fiducial
- 248 → 494 PMTs

Neutron

- Inner region of existing muon veto
- · optically separate
- · 120 additional PMTs
- · Gd in the water tank
- 0.5 % Gd₂(SO₄)₃

222Rn distillation

- Reduce Rn (²¹⁴Pb) from pipes, cables, cryogenic system
- New system, PoP in XENON1T

Durification

- · Faster xenon cleaning
- 5 L/min LXe (2500 slpm)
- XENON1T ~ 100 slpm

XENONnT

Audizioni schede INAF RSN4 -- 26/5/2021

XENONnT Schedule

XENON

Marzo-Maggio 2020:

- commissioning PMTs ed elettrodi in vuoto
- commissioning sistema criogenia

Giugno-Luglio 2020:

- preparazione installazione nVeto
- installazione sistema calibrazione
- installazione elettronica nVeto in DAQ room

Agosto-Settembre 2020:

- installazione nVeto

Ottobre-Novembre 2020:

- riempimento criostato con 8.6 t di LXe
- ripristino del Muon Veto

11 Dicembre 2020

- riempimento serbatoio con acqua demineralizzata

Gennaio 2021 -> now

- inizio commissioning nVeto e TPC
- ... commissioning, commissioning, commissioning
- preparazione per impianto purificazione Gd

May 2021: start of Science Run

Audizioni schede INAF RSN4 -- 26/5/2021

Fundings of upgrade to XENONnT

Voci di spesa		Costo (kEuro)	INFN founded the upgrade to
gas Xenon		360	XENONnT with a total of 1425 k€
elettronica TPC		90	in the past 5 years
pompa LXe		100	2021-2023 we expect 50 k€/year
pompa GXe		45	Xenon gas is worth ~1500 k€/t
nVeto	PMTs	200	Total cost of the upgrade,
	meccanica	130	including XENON1T, is 20 M€
	elettronica, HV, DAQ	230	
	GdPlant	270	
Totale		1425	
XENONnT	Audizioni	schede INAF RSN4 26/	5/2021 21

The XENON Project @ LNGS

XENON

2005-2007	2008-2016	2012-2018	2020-2025	2027–
15 kg	161 kg	3200 kg	8400 kg	50 tonnes
15 cm	30 cm	96 cm	150 cm	260 cm

Towards DARWIN

XENON

INAF in XENON

XEN

ΟΑΤο

3 full time permanent researchers

Gian Carlo Trinchero (PI Torino) – Member of XENON CB (0.8 FTE) Walter Fulgione (PI LNGS) – Member of XENON CB (0.8 FTE) Andrea Molinario – Responsible of muon veto WG (0.8 FTE)

Università di Torino 1 PhD student Emanuele Angelino *(1.0 FTE)*

Working on neutron veto and muon veto electronics and DAQ Data analysis Low energy calibration with ³⁷Ar

XENONnT

In prospettiva, sarebbe auspicabile un allargamento del gruppo (con TI, TD e AdR) per acquisire maggiori responsabilità in XENONnT e nell'ottica dello sviluppo dell'hardware per DARWIN

Backup

¹²⁴Xe Double Electron Capture

Search for CEvNS of ⁸B solar v

Search for Coherent Elastic Scattering of Solar ⁸B Neutrinos in the XENON1T Dark Matter Experiment I <u>PRL 126, 091301</u>

 $R = \phi(\nu) \times \sigma_{\nu} \times N_{Xe} \times \text{exposure}$ \$\approx 600 events/(tonne \times year)\$

S2 threshold: S2 > 200 120PE

S1 threshold: Three Two PMTs seeing light within 50ns

Additional cuts not optimized for CEvNS-

Expected Backgrounds		
in the standard WIMP analysis		

arXiv:2012.02846

Source	13t	1.3 t, NR Ref.	
ER	627 ± 18	1.6 ± 0.3	
Radiogenic	1.4 ± 0.7	0.8 ± 0.4	
CEvNS	0.05 ± 0.01	0.03 ± 0.01	
Accidental	0.5 +0.3_0.0	0.10 +0.05-0.00	
Surface	106 ± 8	4.8 ± 0.4	
Potal	735 ± 20	7.4 ± 0.6	

Expected Backgrounds in the dedicated low energy analysis

Source	Expectation 2.25		
CEVNS			
Accidental	5.14		
ER	0.21		
	0.03		
Surface	Negligible		
Total	7.65		

Results: no significant excess

HC	LHA	BG	Signal	Observed
0	≥2	0.10	0.13	0
0	<2	3.58	0.46	4
1	≥ 2	0.06	0.25	0
1	<2	1.58	0.84	2
2	≥2	0.02	0.18	0
2	<2	0.05	0.39	0
1000	Total:	5.38	2.25	6

XENONNT Physics Reach

XENON

XENONnT Physics Reach

XENON

AND MANY OTHER PHYSICS CHANNELS TO EXPLORE...

DARK MATTER MODELS

WIMP models
Light dark matter
Mirror dark matter
Luminous dark matter

SOLAR NEUTRINOS [®] B CEvNS [©] pp elastic scattering [©] v Magnetic moment BEYOND SM Neutrinoless DEC Neutrinoless double-beta decay ASTROPHYSICS Supernova neutrinos GW multimessenger 0vββ decay

