

Exploring the X-ray Transient and variable Sky

Andrea De Luca INAF/IASF Milano

Aperiodic, transient, periodic phenomena in the high-energy sky

From variability to physics

Accretion physics

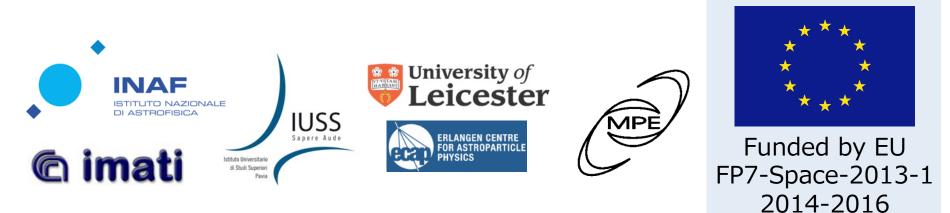
- radiation efficiency of accretion flows
- generation of winds and jets
- role of magnetic field

Strong gravity physics

Mechanisms behind massive stars explosions

Physics of B-field generation and dynamics

- in compact objects
- in normal stars


The EXTraS project

EXTraS goals:

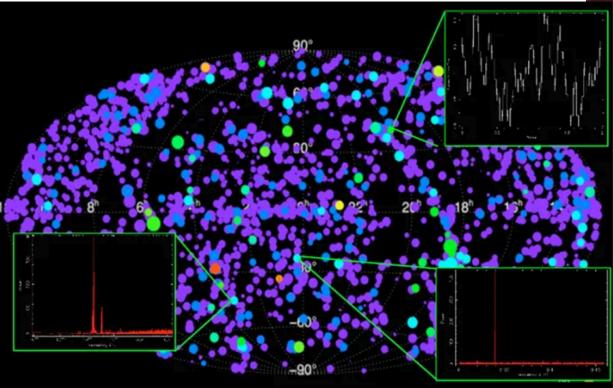
- extract all temporal domain information from XMM/EPIC data (mostly unexplored in ESA/XMM-SSC catalogues);
- characterise it;
- release it to the community in an easy-to-use form

→ new science

The EXTraS collaboration: A. De Luca (PI), R. Salvaterra, A. Belfiore, S. Carpano, D. D'Agostino, F. Haberl, G. L. Israel, D. Law-Green, G.Lisini, M. Marelli, G. Novara, A. M. Read, G. Rodriguez-Castillo, S. R. Rosen, D. Salvetti, A. Tiengo, G. Vianello, M. G. Watson, C. Delvaux, T. Dickens, P. Esposito, J. Greiner, H. Hämmerle, A. Kreikenbohm, S.Kreykenbohm, M. Oertel, D. Pizzocaro, J. P. Pye, S. Sandrelli, B. Stelzer, J. Wilms, F. Zagaria

The EXTraS project

Full details: De Luca+2021, A&A in press, <u>arXiv:2105.02895</u>


A. De Luca	 Based at IASF-Milano. 5 participating institutions. 370 person-months (96 INAF), 2014-2016
1. Aperiodic variability NAFE A. Belfiore	 400,000 XMM sources, time scales 1s – tens of hrs Light curves, hardness ratios, CDFs, power spectra set of parameters describing variability
2. Periodicity CALL Israel	 >300,000 XMM sources, time scales <1s – hrs algorithm accounting for broad-band noise PDS, U.L. on pulsed fraction / folded light curves
3. New transients IUSS A. Tiengo	 Missed by standard src detect. >7,800 XMM observations Bayesian Blocks, time scales <5,000 s time, duration, detect. params. in 5 energy ranges
4. Long-term variability University of S. Rosen	 >400,000 XMM sources, between different observations LCs with detections & U.L. using pointed & slew data set of parameters describing variability

The CATS@BaR project

- Systematic search for pulsations in Chandra/ACIS data
- Started in 2012, led by G.L. Israel
- INAF project

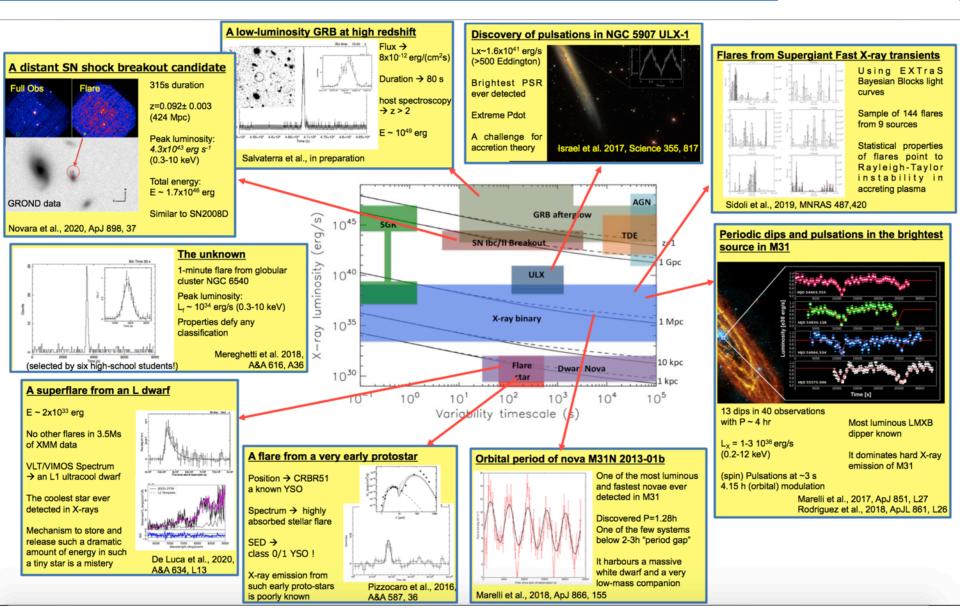
- Same algorithm implemented in EXTraS
- Living project
- Analysis of 15 yr of data (430,000 time series) published by Israel+2016, MNRAS 462, 4371

Results & products

- More than 30 refereed papers, several ESA and INAF PR
- 13 XMM-Newton proposals (3 LPs) totalling ~2.4 Ms
- 4 Chandra proposals totalling ~150 ks
- EXTraS Public Data Archive
 - results on temporal properties of >400,000 XMM sources in a fully searchable database
 - more than 20 million downloadable products
- results on >200,000 XMM sources based on more recent data (internal); >110 new pulsators (XMM and CXO data)

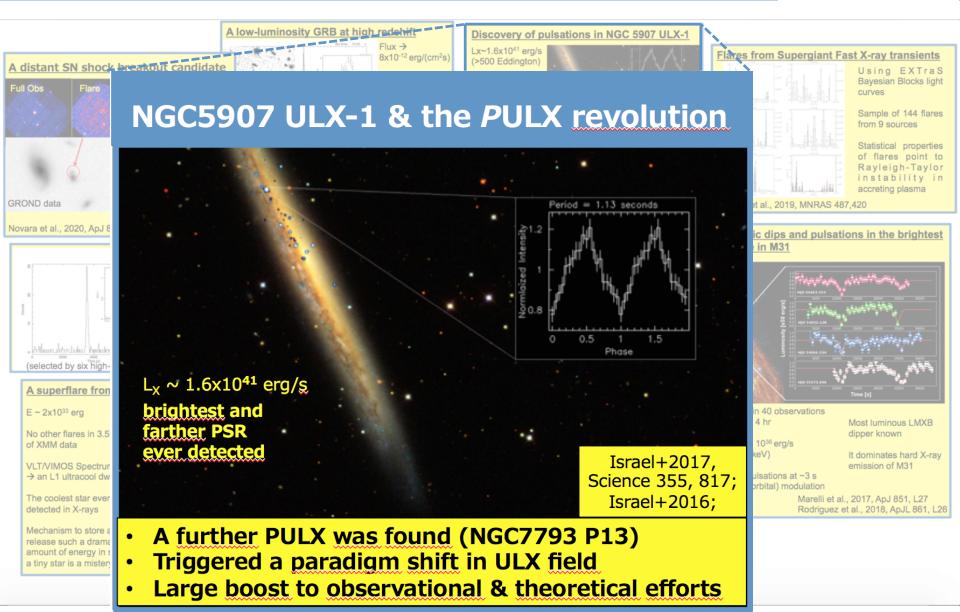
Recovered ~30% of XMM observing time discarded by standard analysis

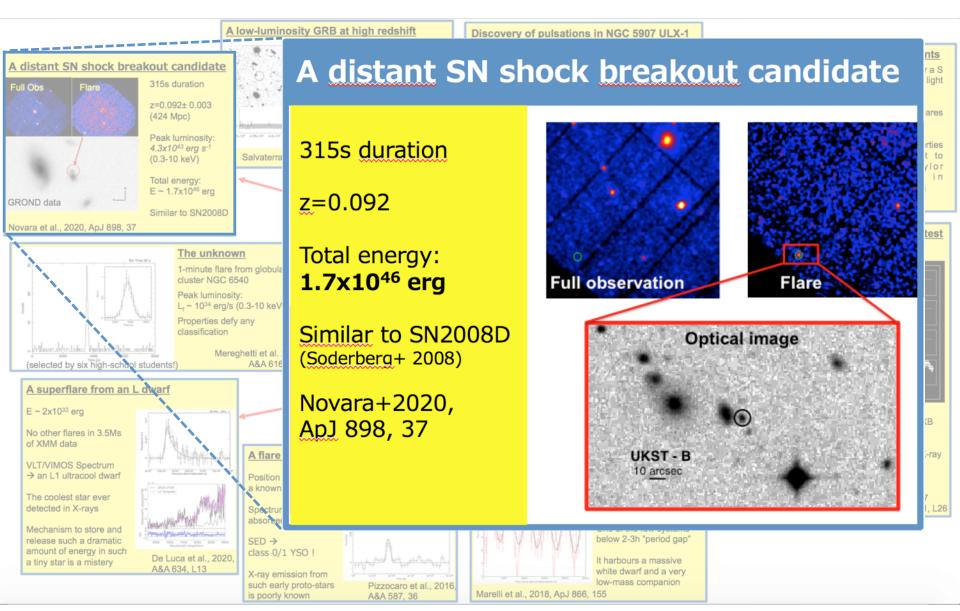
- large set of software tools (mostly released via the EXTraS web site)
- the EXTraS portal, a science gateway service

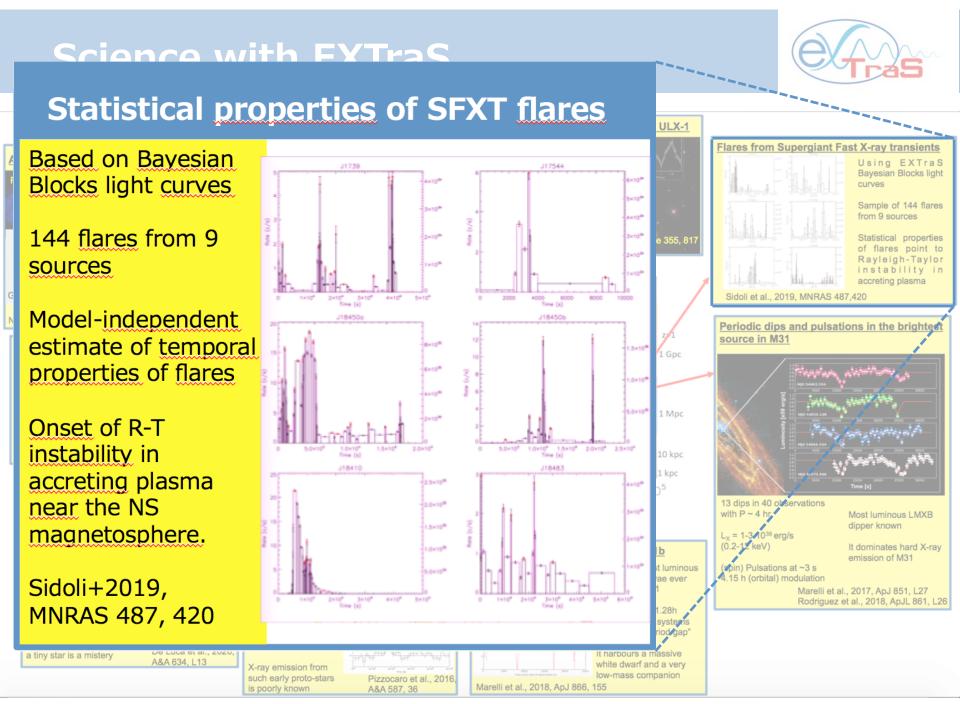

Science highlights in next slides

Scientific exploitation still preliminary

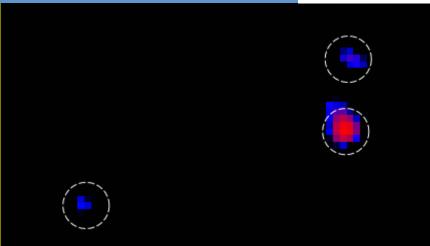
Reference for any current and future experiment in the time domain

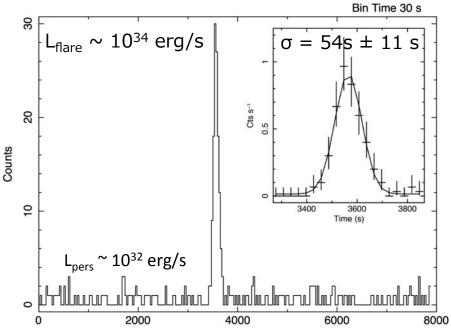

Science with EXTraS


Science with EXTraS

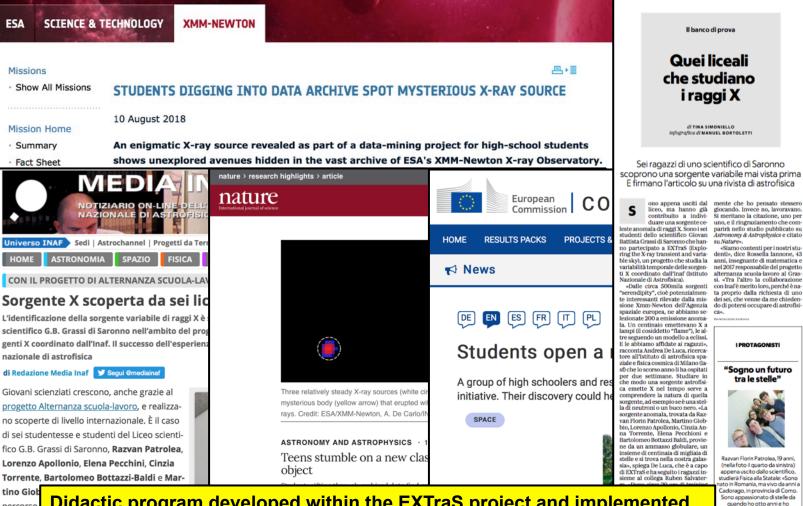


Science with EXTraS


A puzzling flaring source


Selected by a group of high-school students during a stage at IASF Milano

Aligned with GC NGC6540, the flare defies any standard interpretation


Mereghetti+2018, A&A 616, A36

xmm-newton

tino Giot percorso l'Inaf, indi raggi X da ti da And cercatori spaziale e settembri alle attivit progetto and varia Didactic program developed within the EXTraS project and implemented within the Alternanza Scuola-Lavoro program.

Students are involved in screening and classification of light curves

Our educational activity could turn into an interesting citizen science experiment

ha dato cosi il via a una serie di indagini che si

Lab

La scienza in classe

LUCO NERO

2 Gli emettitor

lutti gli oggetti

radiazioni X, che è luce

ad alta energia. Alcuni

potenti (come le stelle

di neutroni e i buchi

è un emettitore molto debole di raggi X

neri). La Terra

STELLA DI NEUTRON

4 Le sorgenti

A oggi è stato rilevato

di sorgenti X, suddivisibili in 4 grandi

famiglie (stelle, stelle di

neutroni isolate, sistemi

binari in accrescimento

nuclei galattici attivi).

Una sorgente di X

se ha proprietà

incompatibili con

quelle delle classi già

note di oggetti cosmi

è anomala

siderato moltissimo essere tra

ei dell'Ifan». E ci è riuscito, Razva

ha fatto parte del team

di studenti del Grassi che hann

contribuito alla scoperta della nuova sorgente di radiazioni X nomala. «Se prima era un sogno

ora che ho visto come lavorano i cercatori, so che vorrei studiare le

stelle. C'è ancora così tanto da

scontire Ecco, la ricerca ti

scoprire.

Loso questo è vero per con

isciplina ma in più per l'astrofisica

si ha la possibilità

pensavo si trattasse di un'analisi

"fredda", ma ho avuto la

affatto: ti fa capire moltissimo di

un fenomeno»

ssibilità di vedere che non lo è

di farlo guardando il cielo.

ermette di non smettere mai di

più di mezzo milione

sono emettitori più

cosmici er

L'abc delle radiazioni cosmiche

per svelare i misteri dell'universo

1 L'astronomia X

Nasce con Riccardo Giacconi (Nobel per la física nel 2002),

che nel 1962 scopre

3 I campi di forza

Perché venga emessa

radiazione X devono

essere presenti campi

gravitazionali ad alta

che viaggiano ad

altissima velocità

ntensità, o particelle

I dati raccolti

Studiare le sorgent

di X serve a conoscer

aspetti dell'universo impossibili da rilevare

Prima dell'astronomia

parziale dei fenomen

e deali oggetti e della

storia dell'universo

con la luce visibile

avevamo un'idea

intensi, campi

elettromagnetici molto

Scorpius-XI, prima

sorgente nota extraterrestre di raggi X

Our team

IASF Milano A. De Luca M. Marelli S. Mereghetti R. Mignani R. Salvaterra L. Sidoli A. Belfiore (TD) M. Kovacevic (AdR)		OA-Roma G.L. Israel A. Miraval Zanon (Adr) IASF Palermo F. Pintore G. Rodriguez NYU Abu Dhabi M. Pasquato		Coordination A. De Luca		
				A. De Lu M. Marel S. Mereg F. Pintore R. Salva L. Sidoli A. Belfio	Mereghetti Pintore Salvaterra Sidoli <i>Belfiore</i>	Search for pulsations G.L. Israel G. Rodriguez L. Sidoli A. Belfiore A. Miraval Zanon P. Esposito Supervised Machine- Learning A. De Luca M. Marelli
IUSS Pavia A. Tiengo <i>P. Esposito (RTDB)</i>				UI	Tiengo nsupervised achine- earning	
	FTE 2021	FTE 2022	FTE 2023		. De Luca . Marelli	R. Mignani R. Salvaterra
INAF	TI 2.05	TI 2.05	TI 2.05	R. Salvaterra <i>M. Kovacevic</i> M. Pasquato	M. Kovacevic A. Tiengo M. Pasquato	
	TD 0.6	TD 0.1	TD 0.0			

TI 0.1

TD 0.1

Associates

TI 0.1

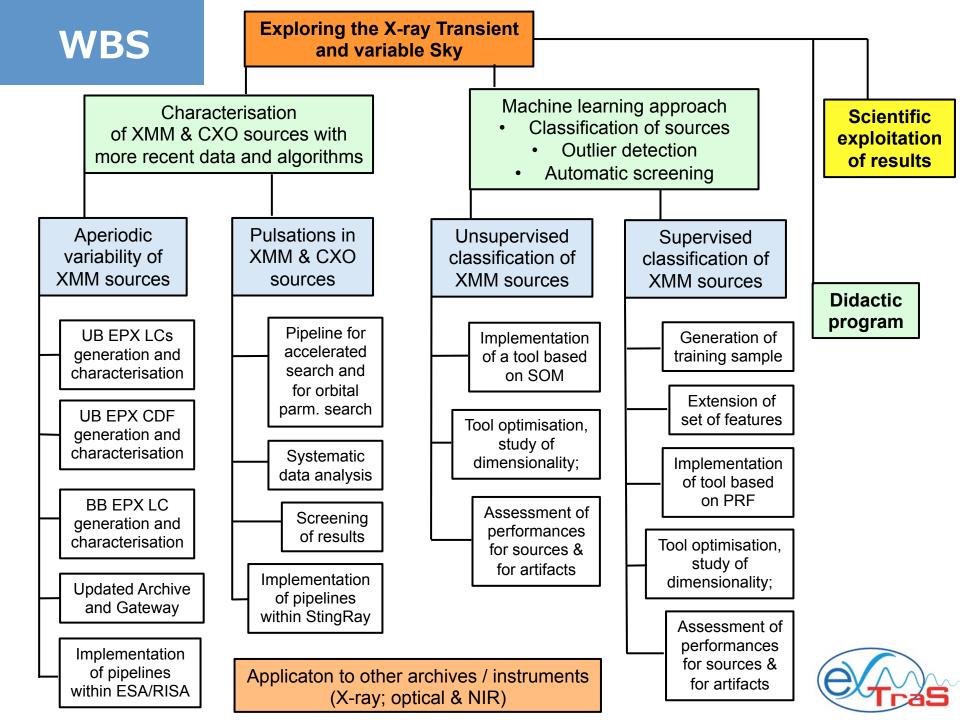
TD 0.0


TI 0.1

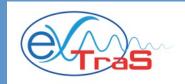
TD 0.0

Interpretation of results

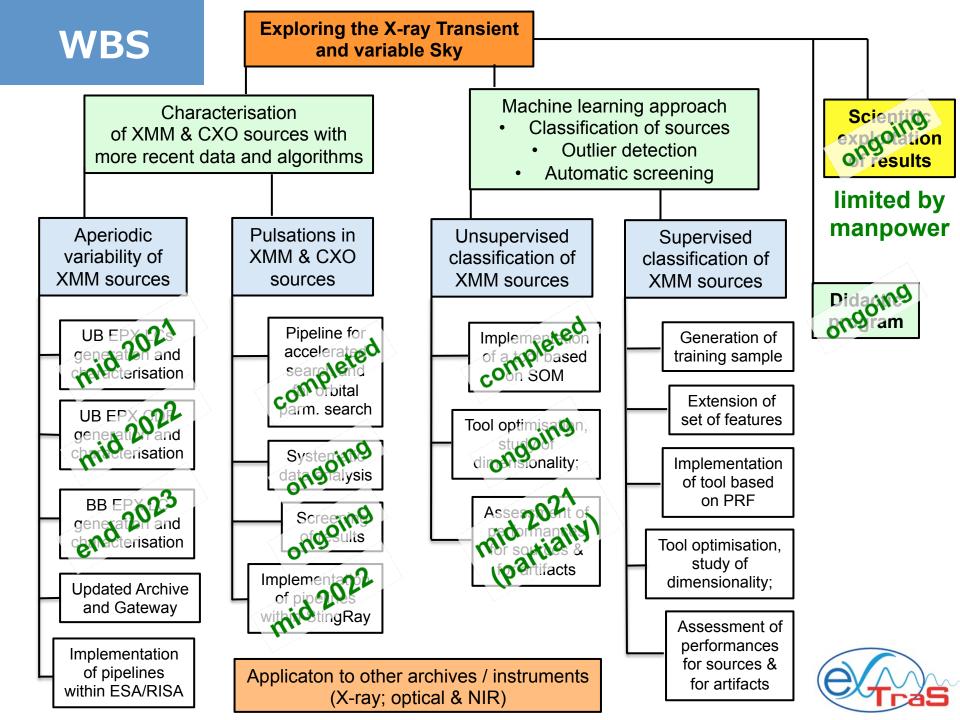
All team members are contributing



- EXTraS funded by EC (FP7-SPACE GA 607452, 2014-2016)
 - EC contribution to the consortium 2.479 M€
 - INAF share: 507 k€
- Additional fundings within ASI-INAF AAE (2017-2019)
 - o 1° call 80 k€ ULTraS project (PI A. De Luca)
 - 2° call 122 k€ PulsULTraS project (PI G.L. Israel)
- We have no fundings dedicated to the project
- We are seeking for opportunities in the future


INAF Leadership

- INAF IASF Milano in particular had a key role in all phases of the XMM-Newton mission
- Such expertise was crucial for the success of the EXTraS project, led by INAF
- Our team has a lead position in (archival) time domain investigations (best software tools and expertise, huge set of results and products)
- Lead position in science
- We firmly intend to continue this success story by extending our activities


Criticalities

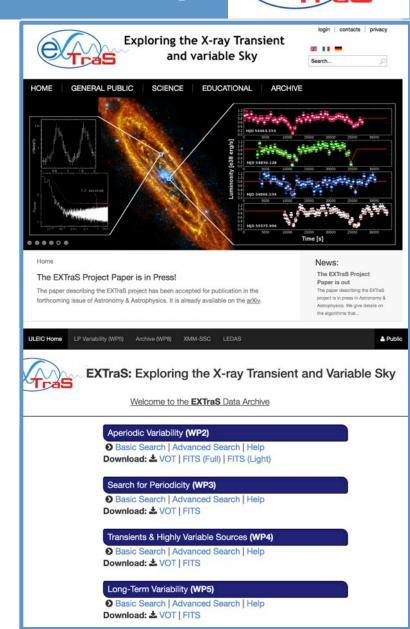
- No dedicated fundings
- Lack of manpower limits planned developments
- Expertise in machine learning approaches contributed by a young scientist (AdR) and by a collaborator (INAF associated).

 \rightarrow Our team needs to be strengthened

 Computing time and storage. Availability of computing resources within the CHIPP initiative has been crucial. We were also awarded computing time at CINECA.

An invitation to the INAF community

Results and products on >400,000 sources are available online


New results and products on additional 200,000 sources (sample is growing)

Set of tools also available

Data access from www.extras-fp7.eu

Please contact us!

We would be glad to collaborate, to maximize science extraction from this gold mine

