

Stefano Borgani (INAF - UNITS - IFPU) On behalf of **INCC**

Italian Network for Computational Cosmology

aka, Simulations of Cosmic Structure Formation in INAF

What is a Cosmological Simulation?

The problem:

- → Solve the gravitational instability of a self-gravitating collisionless fluid from cosmological scales (~ Gpc) down to the scales relevant for galaxy formation (~100 pc scales), in an expanding background
 - → Approximate methods: Lagrangian Perturbation Theory to speed up computations when dealing with ~ Gpc scales
- → Follow the hydrodynamics of cosmic baryons and astrophysical processes taking place at sub-pc scale, but affecting Mpc scales (cooling, star formation, SMBH accretion, SN and AGN feedback,)

→ Shortcut: Semi-analytical models of galaxy formation (see GAEA presentation) The solution: resort to massively parallel codes for cosmological simulations, running on the most advanced HPC infrastructures

It is instrumental !!!!!

Simulation work has to be considered as a fundamental infrastructure activity! (see presentations of Euclid, LSST, Athena, SKA, X-GALCLU, ZOOMING) But rarely or never supported by agencies.....

→ Generate mock observations (surveys or pointed observations)

- to define scientific case and requirements for telescopes/instruments
- for development/test/validation of analysis pipelines (E2E simulations)
- → Calibrate theoretical/observational systematics of cosmological tools: E.g. definition of likelihood functions, halo mass function and bias, velocity bias, cluster mass measurements from WL/X-ray/SZ/dynamics, IGM thermal history for Ly-alpha cosmology, RSD & BAO modeling, cosmic shear, cosmic voids, CMB-XC,
- → Most important involvement in Euclid , with several coordination roles in SWGs, WPs, KPs, ISTs, SGS-OUs
- → In-kind contribution for LSST
- → But also: Athena, SKA, WEAVE@WHT, HIRES@E-ELT, ATLASt, eROSITA

N-body simulations

Non-linear gravitational instability of a collisionless self-gravitating fluid in an expanding background

- → Structure of DM halos and statistics of their population
- → Accurate prediction of cosmological observables in LCDM
- → Measurement of cosmic (co-)variances for cosmological applications
- → Effect of non-standard cosmologies:
 - Neutrino masses
 - DE beyond quintessence
 - Warm, Mixed, non-Thermal, Fuzzy, self-interacting, decaying, DM
 - Modified Gravity
 - Non-Gaussian perturbations

<u>Codes of choice</u>: Gadget-3, Gadget-4, OpenGadget (Tree-PM)

Massive neutrinos

Approximate simulation methods

Fast and flexible generation of large ensembles of large-scale distribution of collapsed halos

- → Generate large ensembles of past-light cones for mock surveys
 - Precise measurement of covariances
 - Exploration of parameter space of cosmological models
- → Interface with HOD to paint galaxies for optical/near-IR and HI surveys
- Now included different non-minimal LCDM extensions

<u>Code of choice</u>: Pinocchio (LPT-based)

redshift

0°

Hydrodynamical simulations

Evolution of cosmic baryons under the action of gravity and astrophysical processes driving galaxy formation from early epochs (z>10) to the nearby universe

- → Predicting morphologies and morphological mix of galaxies
- → Understand the eco-system of galaxies and IGM/CGM/ICM
- → Role of different feedback sources (SN, AGN, etc)
- → Production and circulation of cosmic metals
- → Predictions of multi-lambda properties of galaxies, clusters, IGM/ICM/CGM
- → Impact of baryons on cosmological observables
- → Calibration of cosmological probes

<u>Codes of choice</u>: Gadget-3, OpenGadget (SPH), AREPO (Eulerian moving mesh)

Who are we?

Team Summary

15. Personale INAF coinvolto

Numero di partecipanti INAF al progetto: 16

Struttura	Nfte	N0	TI 21	TI 22	TI 23	TD 21	TD 22	TD 23	Nex	Extra
OAS BOLOGNA	2	1	0.6	0.6	0.6	0	0	0	1	0.1
O.A. TRIESTE	10	1	3.3	3.3	3.2	1.1	0.9	0.4	1	0.15
IASF MILANO	1	0	0.4	0.4	0.4	0	0	0	0	0
O.A. BRERA	1	0	0.3	0.3	0.3	0	0	0	0	0
Totali	14	2	4.6	4.6	4.5	1.1	0.9	0.4	2	0.2

16. Personale Associato INAF coinvolto

Numero di partecipanti Associati INAF: 13

#	Struttura	TI 2021	TI 2022	TI 2023	TD 2021	TD 2022	TD 2023
1	Università degli Studi di Trieste	0.5	0.5	0.5	0	0	0
2	OATs	0.8	0.8	0.8	2.1	2.1	0.3
3	OAS Bologna	0.1	0.1	0.1	0	0	0
4	UNITS	0.3	0.3	0.3	0	0	0
5	IASF Milano	0	0	0	0.7	0.7	0.0
6	OAS	0	0	0	0.0	0.1	0.1
7	UNIBO	0	0	0	0.4	0.4	0.4
	Totali	1.7	1.7	1.7	3.2	3.3	0.8

Who are we?

N-body simulations

Marco Baldi Stefano Borgani Carmelita Carbone Elisabetta Carella Tiago Castro Gabriella De Lucia Fabio Fontanot Carlo Giocoli Ben Granett Valerio Marra Lauro Moscardini Matteo Viel

Approximate Methods

Stefano Borgani Tiago Castro Alessandra Fumagalli Carlo Giocoli Pierluigi Monaco Alex Saro

Hydrodynamical Simulations

Veronica Biffi Stefano Borgani Max Gaspari **Carlo Giocoli Gianluigi Granato Umberto Maio** Federico Marinacci Ilaria Marini Massimo Meneghetti **Giuseppe Murante Antonio Ragagnin Cinthia Ragone** Elena Rasia Alex Saro Luca Tornatore Matteo Viel

Code Development

Marco Baldi Gianluigi Granato Umberto Maio Federico Marinacci Pierluigi Monaco Giuseppe Murante Eduardo Quintana Antonio Ragagnin Giuliano Taffoni Luca Tornatore

<u>Trieste (OATs + UNITs + SISSA + IFPU)</u>: 14 staff + 2 postdocs + 3 PhD students <u>Bologna (OAS + UNIBO)</u>: 5 staff + 2 postdocs <u>Milano (IASF + OAMi + UNIMi)</u>: 2 staff + 1 PhD student

<u>At present:</u> 1 ERC-StG (partially), 2 H2020-FET-HPC, 1 Levi-Montalcini, INFN-InDark

→ No post-doc supported by ASI, so far, for Euclid-related simulations

Access to computing infrastructures:

- CHIPP & INAF-CINECA MoU
- Local clusters @ OATs and @ UniBO
- ISCRA @ CINECA
- PRACE
- SUPERMUC @ LRZ-Garching
- INFN cluster and storage @ CNAF for Euclid activities
- Tianhe-2 @ Guangzhu
- Small local clusters/servers for postprocessing and code development
- CINECA and IA2 support for long-term storage

~ 10⁷ core hours secured over the last 2-3 years through (highly successful) applications to competitive calls

Criticalities

→ Collaboration with CINECA:

- Provider of services or scientific partner for collaborative research projects?
- CINECA computer scientists working on astrophysical applications?

→ Flexible access to HPC facilities for code development and testing

- In-house (i.e. INAF) facilities
- → Medium and long-term storage:
 - Crucial for a more efficient exploitation of simulations and dissemination
 - Proximity to computing nodes
 - Archival and VO-like data publication

Significant benefits from CHIPP and INAF-CINECA MoU that go beyond the allocation of computational resources

Competences to be (further) developed

- → Code development and HW/SW co-design for exa-scale applications (ExaNest, EuroEXA, EuPEX, ...; see EXACT presentation) Parallelization as of today: MPI/OpenMP/OpenACC
- → Machine-learning methods
 - Run-time & post-processing analyses
 - Exploration of parameter space of simulations
- → Visualization / data exploration and navigation
 - Much more than fancy movies and images → VisIVO
- → Postprocessing tools for simulated mock observations, from radio (interferometry and single dish) to X-ray satellites
- → Quantum computing: a game changer or a risky path?
 - Ongoing discussion with I<u>BM Research Center in Zurich</u> for the development of a Quantum Simulation Code
 - Partner in a <u>QuantERA proposal</u> submitted for the development of applications in astrophysics