

The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (Ariel)

(G. Micela on behalf of the Ariel team)

INAF - CSN-2 19 May 2021

Exoplanet missions

UNIVERSITÀ

degli studi FIRENZE SAPIENZA

UNIVERSITÀ DI ROMA

ARIEL

- M4 ESA mission (adopted Autumn 2020– Launch 2029)
- 1-m telescope,photometry+ spectroscopy from VIS to IR -Simultaneous coverage 0.5-7.8 micron (R = 1 to 300)
- Payload consortium: 15 ESA countries + NASA
- Atmospheres of ~1000 exoplanets (rocky + gaseous), mainly transits and eclipse

Individual planet

Chemical composition Atmospheric circulation + cloud pattern Equilibrium or non-equilibrium chemistry? Impact with stellar environment Coupling interior-atmosphere Impact of stellar environment & system history

Large population of diverse planets

Chemical diversity

Agenzia Spaziale

Correlation clouds-temperature-stellar-type How fast atmospheres change through time?

Correlation elemental composition planet provenance

Coupling atmosphere-interior through time Transition between terrestrial planets and sub-Neptunes

> UNIVERSITÀ Degli studi

SAPIFNZA

Observing Strategy: differential spectroscopy

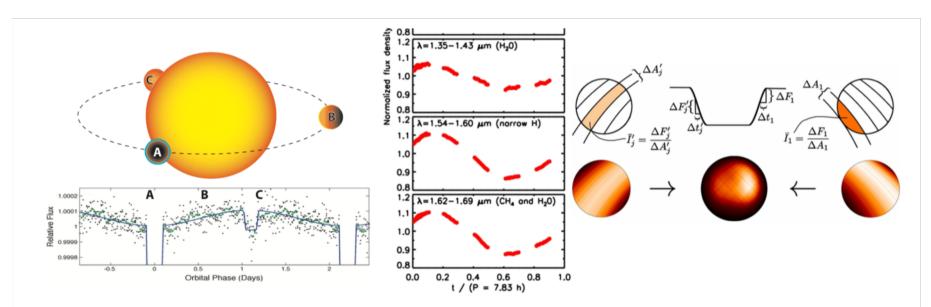
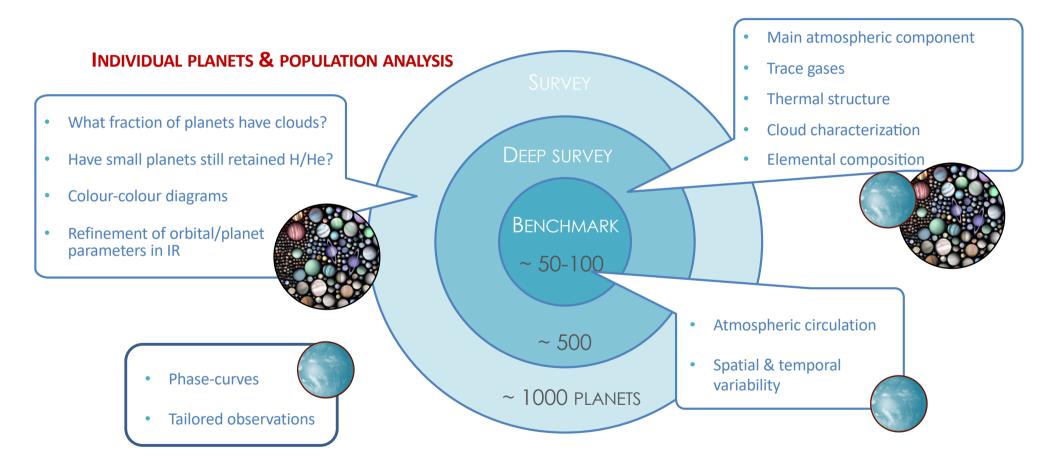
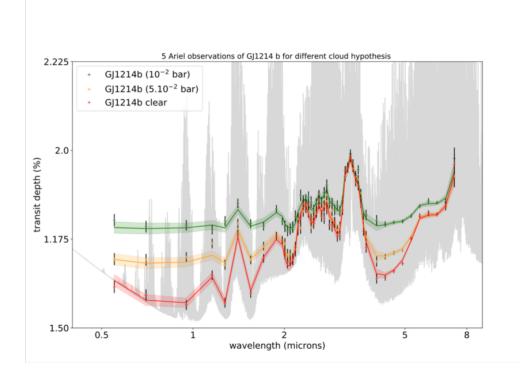
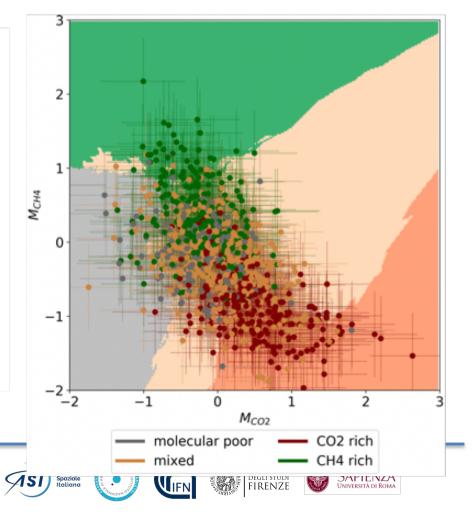



Figure 3-1: Methods adopted by Ariel to probe the exoplanet composition and structure. Left: phase-curve of the transiting exoplanet HAT-P-7b as observed by Kepler (Borucki et al. 2009). The transit and eclipse are visible. Centre: time series of brown-dwarf narrowband light curves observed with HST-WFC3 (Apai et al. 2013). The spectral bands have been selected to probe specific atmospheric depths and inhomogeneities in the cloud decks. Right: slice mapping with ingress and egress maps as well as a combined map of HD189733b at 8 µm. These were achieved with Spitzer (Majeau et al. 2012; De Witt et al. 2012).


ARIEL 4-Tier approach


Individual planet

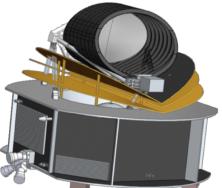
Simulated Ariel observations of the sub-Neptune GJ1214b with clouds at different pressures.

Population analysis

Simulations of Ariel Tier 1 observations to identify families of planets

Science questions

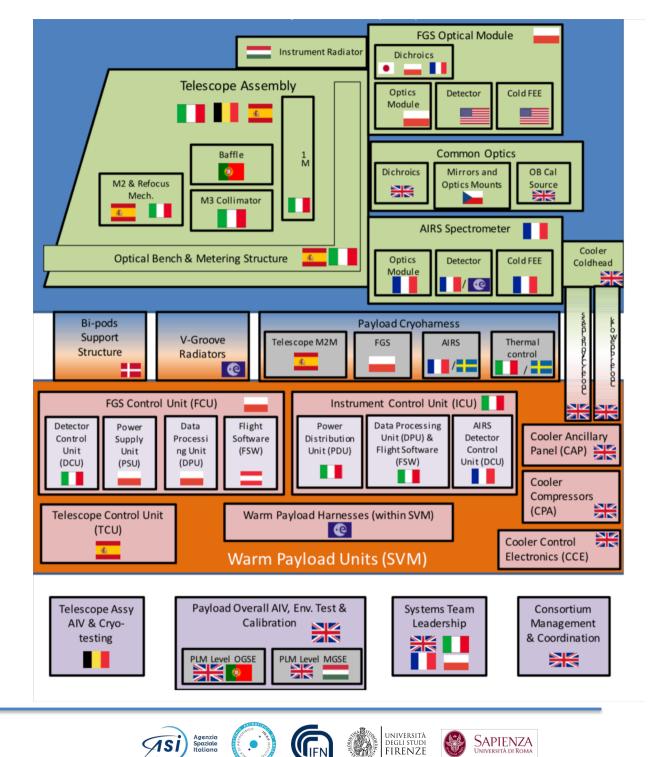
- Composition and structure of planetary atmospheres
- Planetary formation and evolution (evidence for migration)
- Planetary interiors structure
- Energy budget of planetary atmospheres (e.g. albedo, vertical and horizontal temperature structure, weather/temporal variations)
- Chemical processes (thermochemistry, photochemistry, transport, quenching)
- Clouds (cloud type, particle size, distribution, patchiness)
- Impact of stellar and planetary environment on exoplanet properties



Connected science programs/projects

- EXO-Atm, EXO-Young, EXO-SPI, EXO-Stars
- **AMS:** ARIEL e il legame astrochimico tra dischi circumstellari e pianeti (Turrini)
- **EXOGAL**: *Monitoraggio di sistemi stellari con esopianeti transitanti* (Nastasi)
- **CLIMAX:** *Climate and chemistry: modeling the atmospheres of exoplanets* (Petralia)
- **THE-StellaR-Path**: *Time-dependent High-Energy Stellar Radiation and Planetary Atmosphere interaction* (Maggio)
- DAZzLING: Dust hAZe and clouds in exoplanetary atmospheres: the need for Laboratory measurements and numerical modeLING (Jimenez)

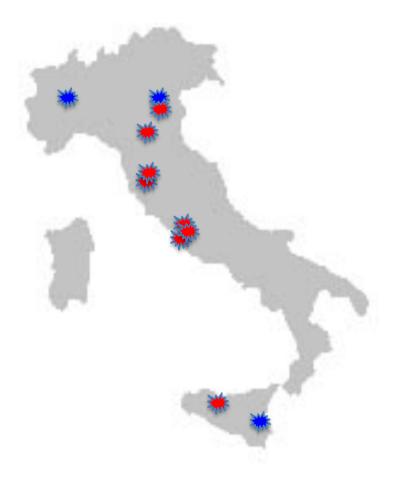
The Payload



- Off-axis Cassegrain telescope, 1.1 m´ 0.73 m elliptical M1; diffraction limited at 3µm. Mirrors, optical bench and telescope manufactured from Aluminium alloy for isothermal design with minimal thermo-elastic deformation.
- Ariel InfraRed Spectrometer (AIRS) -low/medium resolution (R=30– 200) spectroscopy in 1.95-7.8 μm range.
- FGS includes 3 photometric channels (two used for guiding as well as science) between 0.5-1.1 μm + low resolution NIR spectrometer for 1.1-1.95 μm range.

Ariel Payload architecture and responsibilities

(from the Ariel redbook)



Spaziale

SAPIENZA

The Italian players

- ASI
- INAF
- Università di Firenze
- Università La Sapienza
- CNR-IFN UOS Padova
- SSDC/ASI
- + science in other structures
- 105 Italian members growing the largest community in the Consortium
- ~50% tecnology/~50% science

Italian macroactivities

- Coordination of on-board electronics;
- Coordination of the Telescope Assembly;
- PLM Thermal architecture lead at the system level (including sub-systems and interfaces with the SVM);
- Coordination of the Consortium contribution to the Mission Science Ground Segment
 - IOSDC Instrument Operations and Science Data Centre management (also with input from SSDC/ASI)"
- PLM performance evaluation and simulations;
- Science preparation.

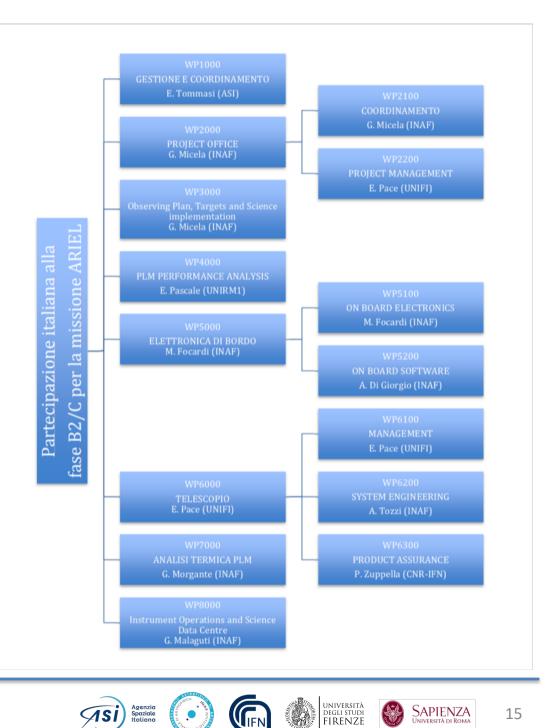
Main activities during Phase B2/C (2021-2023)

- ISRR –July 2021
- MSRR second half 2022
- PDR –early 2023
- SGS (SOC+IOSDC)RR (end 2023)

- Advice for the industrial contracts Telescope, ICU and DCU (managed by ASI)
- Breadboarding activity (Mirror, ICU)
- End-to-end simulations and data processing tools development
- Science preparation activities
 - Observing plan (target selection, stars, mass meas,...)
 - Data analysis to science (instr. and astroph. noise, models, calibr)
 - Science capabilities (planet formation, SPI, Synergy with Sol Syst, other instr.,...)

INAF TEAM

Struttura	Nfte	N0	TI 21	TI 22	TI 23	TD 21	TD 22	TD 23	Nex	Extra
O.A. PALERMO	13	2	2.00	2.00	2.15	1.65	4.00	4.00	0	0.00
OAS BOLOGNA	9	0	2.15	2.15	2.20	0	0	0	0	0.00
O.A. ROMA	1	0	0.00	0.10	0.15	0	0	0	0	0.00
O.A. ARCETRI	11	7	2.25	2.50	2.85	0.30	0.30	0.30	3	0.30
IASF PALERMO	1	0	0.00	0.20	0.30	0	0	0	0	0.00
IAPS ROMA	12	3	0.90	1.00	1.30	1.30	1.40	1.20	1	0.10
O.A. TORINO	3	1	0.30	0.30	0.30	0.00	0.00	0.00	0	0.00
O.A. PADOVA	1	1	0.10	0.10	0.10	0.00	0.00	0.00	1	0.20
O.A. CATANIA	0	3	0.00	0.00	0.00	0.00	0.00	0.00	2	0.25
Totali	51	17	7.70	8.35	9.35	3.25	5.70	5.50	7	0.85



Activity organizations (2021-23)

Agenzia Spaziale

Leadership

Italy, with ASI support, is one of the major contributing countries to Ariel,

- Ariel Consortium System Team key people:
 - Two co-Pis
 - Mission Scientist
 - Telescope Project manager
 - Telescope lead
 - Electrical, Thermal leads
 - ICU PM & lead
 - Software onboard lead
 - IOSDC Manager
 - Chairs of science working groups:
 - Mass Measurement
 - Planet formation
 - Stellar activity
 - Synergy with Plato and Cheops.

Capitalization on National expertises

- Team Bo: Thermal Engineering, Analysis and Modelling at Bologna (Morgante)
- **TESICS:** *Technologies for Space Instrumentation Control Software* (Di Giorgio)

Funds

- Funded by ASI to institutes + Industrial contracts)
- ESA grant (R&D for the developments of primary mirrors processes)
- Dottorato Innovativo con caratterizzazione industriale funded by «PON Ricerca e Innovazione 2014-2020» (cycle XXXIV)
- 2021-2023: 2050 kEu (ACCORDO ATTUATIVO ASI-INAF N. 2021-5-HH.0)

Several products so far

- Ariel Prototype Mirror (primary mirror real size) and mirror processes development
- Primary mirror samples (15cm and 2.5cm) thermomechanical and optical characterization of materials and coating
- ARIEL Assessment Study Report (Yellow Book)
- Exp. Astronomy Special Issue (2018)
- Ariel Definition Study Report (Red Book)
- Exp Astronomy Special Issue (in press)
- Technical notes, Internal reports
- Reports/notes delivered for ESA review
- Several published papers (Science and Technology)

Critical issues

- Team growing (to be verify if it is sufficient, continuous monitoring)
- Capitalization on INAF excellence in some areas we are a reference in Europe and now a few of them became under-sized.
- Recent developments of new skills both in science and technology need to be consolidated – Young people, few involved in stabilization (too recent activities)
- Be sure to be able to exploit the science (> 2029) Careful preparations needed
- **Complex and long** administrative procedures

