INAF INAF Istituto Nazionale Di Astropisica National INSTITUTE For Astrophysics	Tecnologie Avanzate 道 ACCORDO ATTUATIVO n. 2 INAF	e per C 019-24-H	Dttic	c he in DELL'A	raggi-X (ccordo qu	(TAO JADRO	-X) ASI-
CUP F84I18000320005	Title document DEL 008	Issue:	1	DATE	235/10/2020	Page:	1

Tecnologie Avanzate per Ottiche in raggi-X (TAO-X)*

Relazione per la Milestone RA2

Ex Fondi Premiali ASI 2018

Sviluppo temporale: KOM autunno 2019, inizailmente 24 mesi (esteso a fine 2022 a causa della Pandemia)

> * TAO: "Via, strada"; il termine rappresenta il concetto di base del pensiero filosofico e religioso cinese ed è espressione di una primarietà o centralità assoluta dell'Universo e della realtà: è cioè la 'strada per eccellenza', la legge secondo cui si attua l'Universo

PREPARED BY:	G. Pareschi, con contributi da parte di S. Basso, M. Civitani, M. Fiorini, R. Millul, D. Spiga				
APPROVED BY:					
SIGNED FOR	Dr. G. Tagliaferri	date:	23/11/2020		
INAF-OABr					

Piano della presentazione

- Leadership
- Aspetti scientifici/tecnologici
- Gruppo di lavoro nazionale e internazionale
- Risorse interne e Fondi
- Criticità
- Schede "sorelle"

Italian experience, expertise & facilities for asTronomical X-ray optics development

SPIE Optics and Photonics 2021

SPIE. OPTICS+ PHOTONICS

Attend

 \equiv SPIE.

Conference 11822

 (\pm)

Optics for EUV, X-Ray, and Gamma-Ray Astronomy X

Chair(s): Stephen L. O'Dell; Jessica A. Gaskin; Giovanni Pareschi

2 1 - 5 August 2021

On-demand starting 1 August

SPIE Optics + Photonics 2021

Program

North	America	
View Invitation	Browse Program	

Featuring all the great content and connections you expect at Optics + Photonics

Hear the latest advances shared by researchers and scientists in optical engineering and applications, nanotechnology, quantum science, organic photonics and astronomical instrumentation. Meet with top companies from the optics industry at the exhibition.

We are planning to hold this event live in San Diego with options for remote participation should you be unable to travel. Your work is important, so make plans to join your peers in San Diego and help create the future of optics and photonics. Program now available. Registration opens soon.

#SPIEOpticsPhotonics 🎔 🗗 🖸 🗈 🛅

Five days of exciting content and connecting with your community

- Plenary talks
- Technical presentations
- Networking sessions
- Course offerings
- Professional development
- Exhibition

66 papers, 20 con Ricercatori INAF, 14 come primi autori (moltio dei quali legati direttamente a TAO-X

Brevetti depositati

- Brevetto: ""PROCESSO PER LA PRODUZIONE DI UN'UNITA' OTTICA" di ISTITUTO NAZIONALE DI ASTROFISICA ". Brevetto : BREVETTO PER INVENZIONE INDUSTRIALE N.: TO2015A000219 DEPOSITATA IL 15 Aprile 2015 Inventori: BASSO Stefano, CIVITANI Marta Maria, PARESCHI Giovanni
- Brevetto: "METODO PER L'APPLICAZIONE DI UNA SOVRA-COPERTURA RIFLETTENTE A BASE DI CARBONIO SU UN'UNITÀ OTTICA AD INCIDENZA RADENTE"- Brevetto Europeo in data 13 agosto 2019 con il nr. 19191474.6. Inventori: PARESCHI Giovanni, CIVITANI Marta Maria, SIRONI Giorgia, VALSECCHI Giuseppe, MAGAGNIN Luca, GIBERTINI Eugenio.
- Brevetto: "METODO DI ANALISI DI CAMPIONI TRAMITE RAGGI X A BASSA ENERGIA E RELATIVA ATTREZZATURA DI LABORATORIO" B. numero: 102020000015082 Data di presentazione: 23/06/2020Inventori: COTRONEO Vincenzo, CIVITANI Marta Maria, SPIGA Daniele, PARESCHI Giovanni
- Brevetto: "PROCEDIMENTO PER LA REALIZZAZIONE DI ELEMENTI OTTICI PER OTTICHE DI TELESCOPI UTILIZZABILI IN MISSIONI SPAZIALI" B numero: 10202000017086 Data di presentazione: 14/07/2020Inventori: CIVITANI Marta Maria, LESSIO Luigi, PARESCHI Giovanni, TOSO Giorgio

Partner Internazionali/Persone di riferimento

- NASA: J. Gasking (Project Scientist NASA della missione LYNX) e il gruppo di lavoro sulle ottiche monolitiche presso NASA/MSFC coordinato da D. Schwatz;
- BabyIAXO Collab.: I. Irastorza (Univ. Saragoza), J. Voegel (LLNL), A. Lidner (DESY) – K. Desch (Univ. Bonn) per lo studio implementativo dell'elioscopio babyIAXO con telescopio X basato su segmenti di vetro sottile realizzati con la tecnica del "cold slumping".
- JAXA: H. Matsumoto (Univ. Osaka) per quanto riguarda lo sviluppo della missione FORCE
- MPE: V. Burwitz di MPE per programmare alla facility Panter di Monaco le calibrazioni in raggi X dei prototipi in corso di sviluppo

Lynx – NASA Missione Obiettivo WP2000 1/3

Lynx is a large X-ray Observatory that will revolutionize our view of the Universe by providing unique insight into the high-energy drivers that govern its formation and evolution.

- × 50 higher throughput while maintaining *Chandra's* on-axis angular resolution.
- ×16 larger solid angle for arcsecond imaging
- ×800 higher survey speed at the Chandra Deep Field limit
- High-Resolving Power for grating spectroscopy (dispersive)
- High-resolution imaging spectroscopy on fine scales (non-dispersive)

Angular resolution (on-axis)	0.5 arcsec HPD (or better)		
Effective area @ 1 keV	~2 m ² (met with 3-m OD)		
Grasp, A*(FOV for HPD < 1 arcsec)	~600 m ² arcmin ²		
Wide FOV sub-arcsec Imaging	10 arcmin radius		

Missione in corso di Valutazione della Decadal Survey 2020 – 5 Milardi \$ budget

Lynx – NASA Missione Obiettivo WP2000 2/3

INAF direttamente e formalmente coinvolto nel processo di sviluppo & trade-off da NASA e ASI (unico Istituto non USA)

Lynx – NASA Missione Obiettivo WP2000 3/3

FMA: three configurations

	Configuration #1	Configuration #2	Configuration #3
	Short allowing one spider	Long with two spider	Long with one spider
Shell configuration	Primary and secondary surfaces are realized joined at IP	Primary and secondary surfaces are realized joined at IP	Primary and secondary surfaces are realized detached
Shell fixation side	Only on $\ensuremath{\varnothing_{\rm MAX}}$ side	Both on \emptyset_{MAX} and on \emptyset_{MIN} :	$\varnothing_{\rm MIN}$ for the primary surface and $\varnothing_{\rm MAX}$ for the secondary surface

By Marta Civitani et al.

Direct polishing of monolithic shells

Shell realization process: overview

Obiettivo: breadboard di 1 shell integrata per dimostrare TRL-4

Missione Obiettivo WP3000 FOCE/JAXA

Table 1. Instrument parameters					
Angular resolution (HPD)	<15"				
Multi-layer Coating	Pt/C				
Field of view $(50\%$ response) at 30 keV	$\sim 7' \times 7'$				
Effective Area at 30 keV	370 cm^2				
Energy range	1–80 keV				
Energy resolution (FWHM) at 6 keV	<300 eV				
Background	comparable to those of Hitomi HXI				
Timing resolution	several \times 10 μ s				
Working temperature	−20±1 °C				

3
10 m
Pt/C
440 mm
$400 \ \mu m$
153
343 cm^2

Fig_3_7. Caratteristiche della missione per raggi X duri FORCE.

Precise positioning and ribs gluing by means of IMA (Integration MAchine) @ INAF-OAB:

Obiettivo: sviluppo di Breadboard per FORCE e..... BabyIAXO

Solar Axion Detection

• First axion helioscope proposed by P. Sikivie

Sikivie *PRL* 51:1415 (1983)

- Blackbody photons (keV) in solar core can be converted into axions in the presence of strong electromagentic fields in the plasma
- Reconversions of axions into x-ray photons possible in strong laboratory magnetic field

 Idea refined by K. van Bibber, Raffelt et al. by using buffer gas to restore coherence over long magnetic field
 Van Bibber et al. *Phys. Rev. D* 39:2089 (1989)

BabyIAXO

BabyIAXO = Intermediate experimental stage before IAXO

- Performance verification for IAXO and significant science return simultaneously
- Conceptual design finished (Presented to DESY Oct 2018)
- Full DESY review happened in May 2019
- Two bores of dimensions similar to final IAXO bores

Fig. 3_11. Spunti per ciostruire un allestimento Museale dedicato alle ottiche per raggi X e alla loro applicazioni in Astronomia Spaziale.

Il foglio bianco non fa nulla – il foglio nero fuma – il cerino si accende

Esperimento di focalizzazione con ottiche radenti

Ottica SAX (Satellite per Astronomia a raggi X): italo olandese (ASI-NIVR, NIVR ora NSO) SAX lanciato nel 1996

SAX 1988 Citterio, 30 shells, diam = 55-147 mm, focal length = 1.8 m,Aeff = ...cm^2 @ 1keV, 175 cm^2 @ 7keV

Presentato con successo al Festival della Scienza di Bergamo, 2019

Team & Fondi

Team Summary

15. Personale INAF coinvolto

Numero di partecipanti INAF al progetto: 16

Struttura	Nfte	N0	TI 21	TI 22	TI 23	TD 21	TD 22	TD 23	Nex	Extra
O.A. BRERA	9	2	2.00	2.00	2.00	0.40	0.40	0.40	0	0.00
IASF MILANO	3	1	0.65	0.35	0.35	0	0	0	0	0.00
O.A. PADOVA	1	0	0.20	0.20	0.20	0	0	0	0	0.00
Totali	13	3	2.85	2.55	2.55	0.40	0.40	0.40	0	0.00

Fondi a sostegno

21. Totale fondi a disposizione (dato aggregato, k€)

Certi 2021	Certi 2022	Certi 2023	Presunti 21	Presunti 22	Presunti 23
300.0	250.0	0.0	0.0	0.0	0.0

Criticità TAO-X

- carenza di personale optomeccanico specializzato, essendo andati in pensione
 molto tecnici ancora non sostituiti (→ il rischio di perdere una serie di know-how e
 è comunque difficile fare funzionare i sofisticati apparati metrologici e di polishing)
- le risorse messe a disposizione sono comunque ridotte (molto meno di quelle messe a disposizione dalla NASA al suo interno per lo sviluppo di metodi alternativi per sviluppare gli specchi di Lynx) e non è assicurata una loro continuità, per raggiungere stadi tecnologici successivi
- se le missioni Lynx e FORCE saranno approvate, sarà necessario che ASI faccia accordi di partecipazione, trovando nel proprio budget le risorse necessarie
- _ per babyIAXO INAF dovrà trovare risorse interne, MUR speciali o tramite altre agenzie per potere partecipare e il tempo per prendere una decisione è limitato
- ritardi dovuti alla preparazione di gare e aggiudicazione di contratti esterni

Schede "sorelle"

- Baby-IAXO F. Tavecchio
- BOOM M. Civitani, sistema metrologico avanzato per ottiche X
- SPRITZ M. Civitani, ottiche monolitiche in Al lavorate otticamente
- SIX-GO, S. Basso, master deformabili per slumping a freddo
- SLOP G. Vecchi, sistemi di polishing avanzati (bonnet + ion beam polishing)
- ATHENA G. Piro, facility di calibrazione BEATRIX, VERT-X e simulazioni per ESA

SLOP_Sviluppo e Lavorazione di Ottiche di Precisione

Coordinatore: Gabriele Vecchi

Vert-X & ATHEN AIT @ Media Lario

ASSEMBLY INTEGRATION AND TESTING FACILITY FOR THE X-RAY TELESCOPE OF ATHENA

ATHENA building with VERT-X (left) and ATHENA AIT (right)

BeatriX being implemented @INAF/Merate

Figure 4: A picture of the BEATriX facility in the INAF/Osservatorio of Brera premise