Galaxy Dynamics in the

Era of Large HI Surveys

Federico Lelli (INAF - Arcetri)

OSSERVATORIO ASTROFISICO DI ARCETE

Talk Outline

1. Role of HI data in galaxy dynamics & dark matter

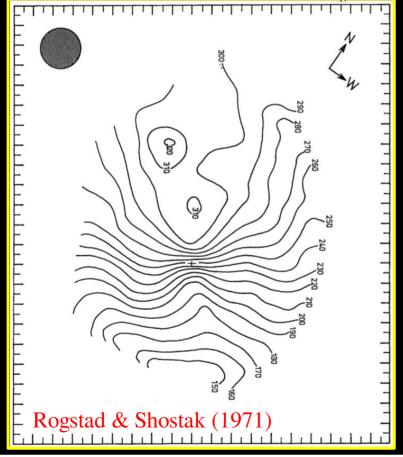
2. BHINGO: preparing for large HI galaxy samples

3. WALLABY with ASKAP: kinematic pipeline

Federico Lelli (INAF - Arcetri)

Talk Outline

1. Role of HI data in galaxy dynamics & dark matter

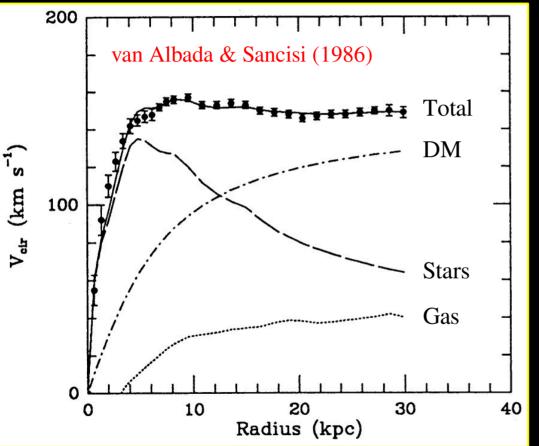

2. BHINGO: preparing for large HI galaxy samples

3. WALLABY with ASKAP: kinematic pipeline

Federico Lelli (INAF - Arcetri)

Long-Standing Role of HI in Galaxy Dynamics

M101 - HI Velocity Field

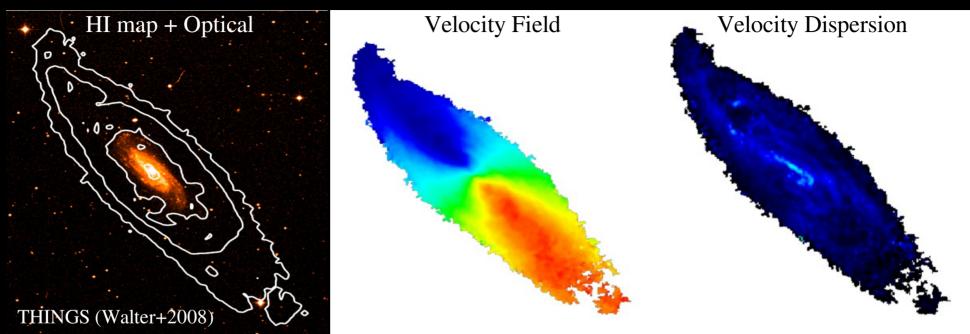


Key Topics in Galaxy Evolution

- Angular Momentum ↔ Galaxy Morphology
- Disk Stability \leftrightarrow Star Formation
- Gas Turbulence \leftrightarrow Stellar & AGN Feedback
- Galaxy Interactions & Mergers
- Gas Removal (outflows, stripping, etc.)
- Gas Accretion (inflows, mergers, etc.)
- And much more...

Federico Lelli (INAF - Arcetri)

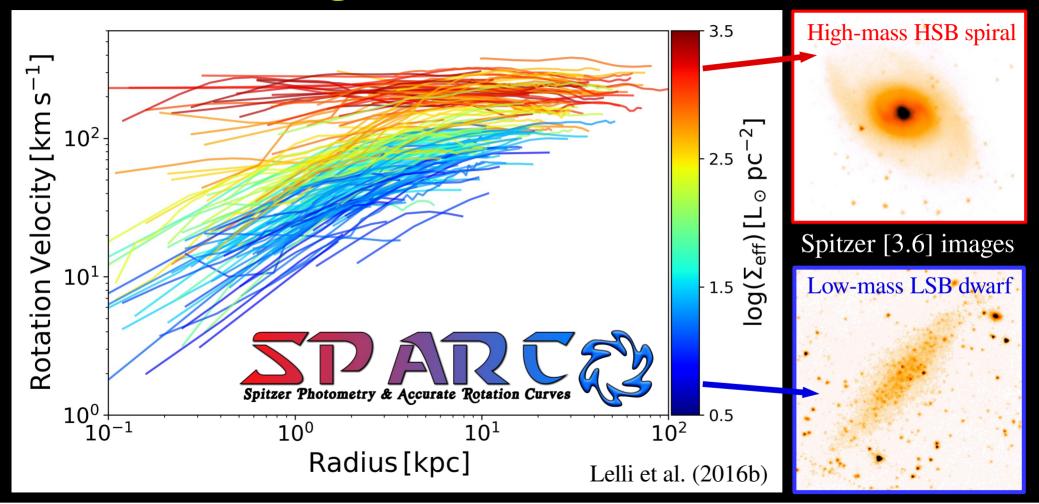
Long-Standing Role of HI in Galaxy Dynamics NGC 3198 – Mass Model



The Dark Matter Problem

- HI Rotation Curves \rightarrow DM Halos: Baryonic Mass \leftrightarrow Halo Mass Cusp vs Core problem - Dynamical Scaling Laws: **Tully-Fisher Relation & others** - Test Alternatives to Dark Matter: MOND, Emergent Gravity, etc.

Federico Lelli (INAF - Arcetri)


HI Emission Line: Optimal Dynamical Tracer

✓ Very extended (~2 stellar size) → probe outermost galaxy regions ✓ Dynamically cold → σ_{HI} ~ 5-10 km/s, $V_{rot}/\sigma_{HI} \gg 1$ → No pressure support → $V_{rot} \simeq$ circular velocity of a test particle in a given gravitational potential

Federico Lelli (INAF - Arcetri)

SPARC: 175 galaxies with H1 rotation curves

Federico Lelli (INAF - Arcetri)

SKA-mid & Pathfinders → First Statistical Samples for HI Galaxy Dynamics

Challenge: automated & reliable software for 3D kinematic modeling

Federico Lelli (INAF - Arcetri)

Talk Outline

1. Role of HI data in galaxy dynamics & dark matter

2. BHINGO: preparing for large HI galaxy samples

3. WALLABY with ASKAP: kinematic pipeline

Federico Lelli (INAF - Arcetri)

BHINGO: BBarolo HI Nearby Galaxies Overview

- Lead by Enrico Di Teodoro & Federico Lelli
- Collection of ~1000 HI cubes from public archives

	\sim		\sim	
Literature Source	Telescope	Resolution	N _{cubes}	Ngal
LARGE SURVEYS				
WHISP	WSRT	25'' - 50''	270	259
ATLAS ^{3D}	WSRT	25" - 100"	142	161
BLUEDISK	WSRT	15'' - 40''	50	67
LVHIS	ATCA	40" - 350"	82	64
VIVA	VLA	16'' - 45''	45	46
PPZoA	WSRT	24"	1	46
URSA MAJOR	WSRT	30"	42	42
HALOGAS	WSRT	18'' - 45''	22	35
VGS	WSRT	20'' - 160''	65	29
THINGS	VLA	5" - 15"	32	27
SAURON	WSRT	30'' - 45''	10	25
FIGGS	GMRT	25" - 55"	23	23
HIX	ATCA	25'' - 70''	23	22
LITTLE THINGS	VLA	10'' - 20''	40	19
VLA-ANGST	VLA	7" – 15"	29	11
SHIELD	VLA	10'' - 30''	12	5
OTHER SAMPLES				
Richards et al. (2016, 2018)	VLA	30" - 50"	25	30
Spekkens & Giovanelli (2006)	VLA	18"	8	12
Saburova et al. (2013)	WSRT	25"	2	7
van der Hulst et al. (1993)	VLA	25"	8	5
Allaert et al. (2015)	VLA-WSRT	15" - 25"	4	4
Pickering et al. (1997)	WSRT	20"	3	3
Mishra et al. (2017)	GMRT	50"	3	3
Trachternach et al. (2009)	WSRT	30"	3	3
Individual Studies	VLA-WSRT	10'' - 50''	15	19
		TOTAL	959	967

Federico Lelli (INAF - Arcetri)

BHINGO: BBarolo HI Nearby Galaxies Overview

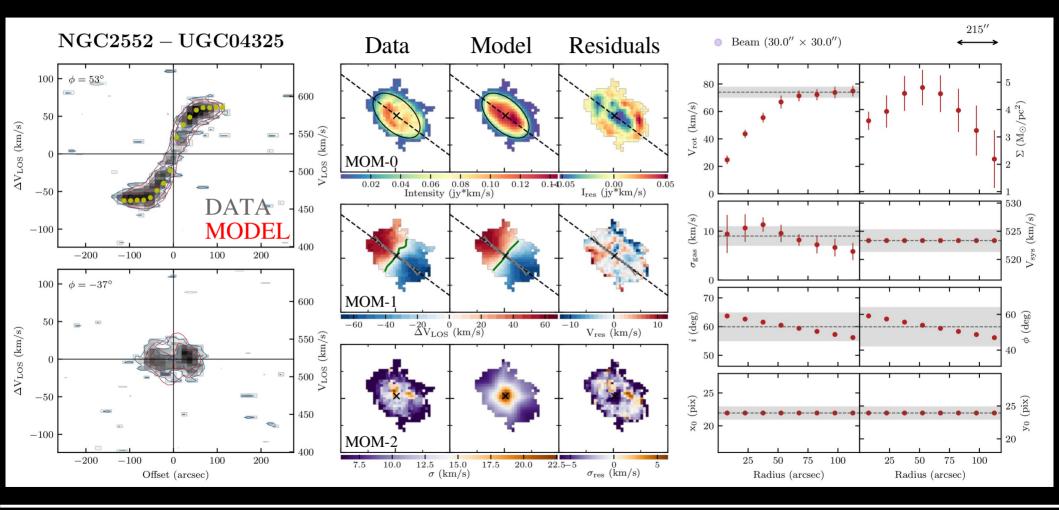
- Lead by Enrico Di Teodoro & Federico Lelli
- Collection of ~1000 HI cubes from public archives
- BBarolo software (*Di Teodoro & Fraternali 2015*) improving automation, efficiency & reliability

Step 1 – Source Finder

- \rightarrow Identified ~1200 individual galaxies
- \rightarrow Moment maps & integrated HI profiles

Step 2 – Kinematic 3D Fitting

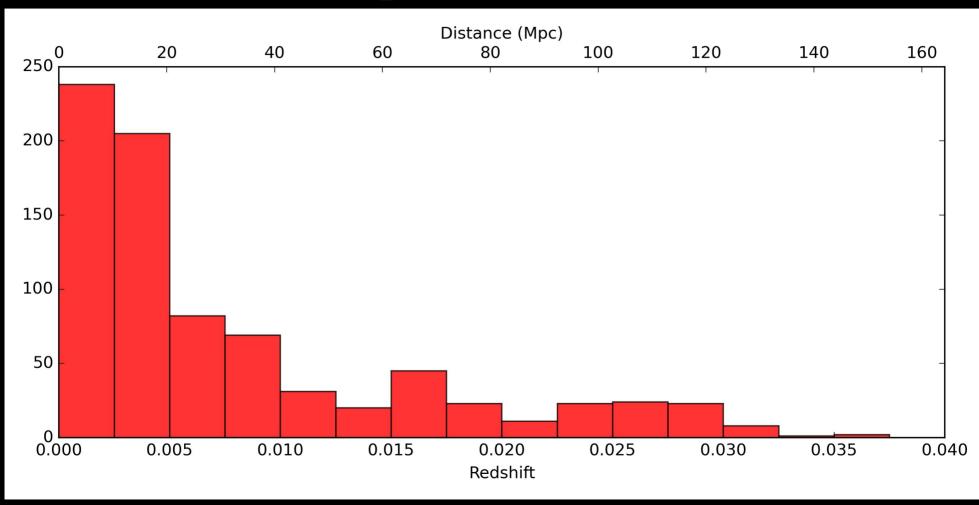
- \rightarrow <u>967</u> good kinematic fits (~5 × SPARC)
- \rightarrow Geometric parameters
- \rightarrow Kinematical parameters


	\sim		\sim	
Literature Source	Telescope	Resolution	N _{cubes}	Ngal
LARGE SURVEYS				
WHISP	WSRT	25" - 50"	270	259
ATLAS ^{3D}	WSRT	25" - 100"	142	161
BLUEDISK	WSRT	15'' - 40''	50	67
LVHIS	ATCA	40" - 350"	82	64
VIVA	VLA	16" - 45"	45	46
PPZoA	WSRT	24"	1	46
URSA MAJOR	WSRT	30"	42	42
HALOGAS	WSRT	18'' - 45''	22	35
VGS	WSRT	20" - 160"	65	29
THINGS	VLA	5" - 15"	32	27
SAURON	WSRT	30" - 45"	10	25
FIGGS	GMRT	25" - 55"	23	23
HIX	ATCA	25" - 70"	23	22
LITTLE THINGS	VLA	10'' - 20''	40	19
VLA-ANGST	VLA	7'' - 15''	29	11
SHIELD	VLA	10'' - 30''	12	5
OTHER SAMPLES				
Richards et al. (2016, 2018)	VLA	30" - 50"	25	30
Spekkens & Giovanelli (2006)	VLA	18"	8	12
Saburova et al. (2013)	WSRT	25″	2	7
van der Hulst et al. (1993)	VLA	25"	8	5
Allaert et al. (2015)	VLA-WSRT	15" - 25"	4	4
Pickering et al. (1997)	WSRT	20"	3	3
Mishra et al. (2017)	GMRT	50"	3	3
Trachternach et al. (2009)	WSRT	30"	3	3
Individual Studies	VLA-WSRT	$10^{\prime\prime}-50^{\prime\prime}$	15	19
		TOTAL	959	967

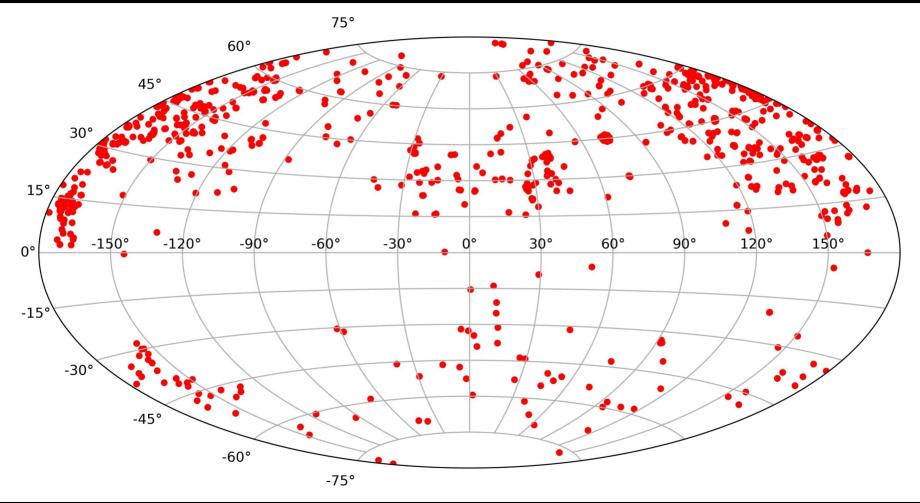
Federico Lelli (INAF - Arcetri)

BAROLO

ascina Ballari


Typical Output from BHINGO

Federico Lelli (INAF - Arcetri)


Galaxy Dynamics in the Era of Large HI Surveys

BHINGO Sample: Redshift Distribution

Federico Lelli (INAF - Arcetri)

BHINGO Sample: Sky Distribution

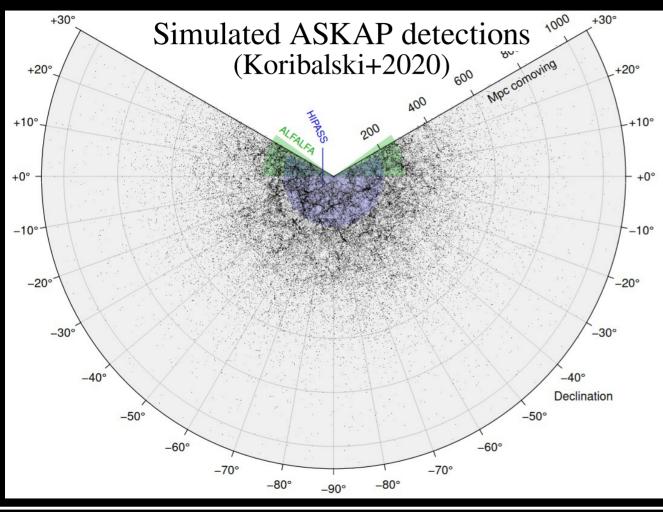
Federico Lelli (INAF - Arcetri)

The Road to the BHINGO Data Release

- Source Finder & Moment Maps Creation
- Automated Kinematic Fitting + Visual Inspection
- Manual Fitting for Problematic Cases (~5%)
 (due to asymmetries, warps, interactions, etc.)
- **×** WISE & Spitzer Photometry (\rightarrow stellar mass distribution)
- × Mass Models (→ dark matter halos, MOND, etc)

STAY TUNED!

Talk Outline

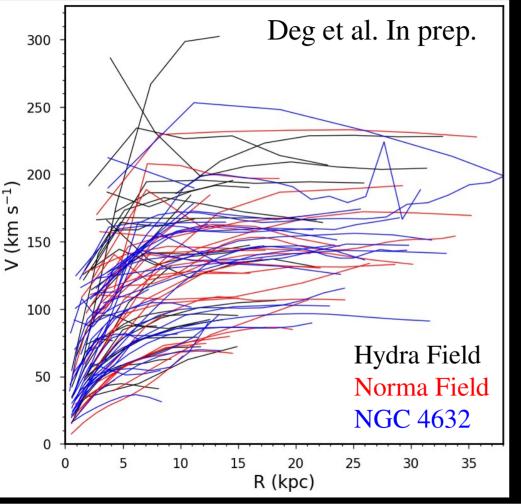

1. Role of HI data in galaxy dynamics & dark matter

2. BHINGO: preparing for large HI galaxy samples

3. WALLABY with ASKAP: kinematic pipeline

Federico Lelli (INAF - Arcetri)

WALLABY: Key Survey with ASKAP


Large Blind HI Survey: • All-Sky Declination $< 30^{\circ}$ • Coverage up to z < 0.26• Angular Resolution ~ 30" • Velocity Res. ~ 4 km/s Expected 500k detections ~5-10k for dynamical work

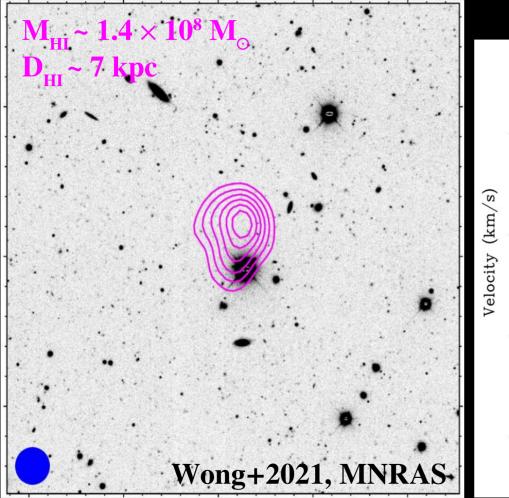
Federico Lelli (INAF - Arcetri)

WALLABY Kinematic Pipeline

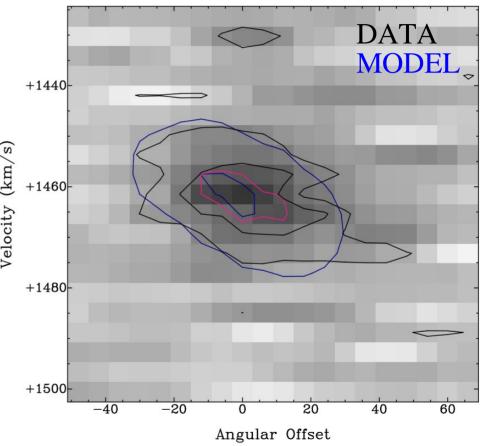
Preliminary Results from Pilot Fields:

- 3 Fields: Hydra, Norma, NGC 4632
- <u>92 kin. models</u> out of 563 detections

~15% success rate for kinematic fits


Rest: unresolved or low S/N galaxies

- Mean of two codes: BBarolo & FAT
- <u>Public release</u> planned in March 2022



Federico Lelli (INAF - Arcetri)

WALLABY will detect optically dark galaxies!

Major-Axis PV Diagram: Rotation?

Federico Lelli (INAF - Arcetri)

Galaxy Dynamics in the Era of Large HI Surveys

Conclusions:

1. New era for galaxy dynamics with large HI samples \rightarrow Key science goal for SKA & pathfinders – <u>Italian expertise</u>!

Conclusions:

1. New era for galaxy dynamics with large HI samples \rightarrow Key science goal for SKA & pathfinders – <u>Italian expertise</u>!

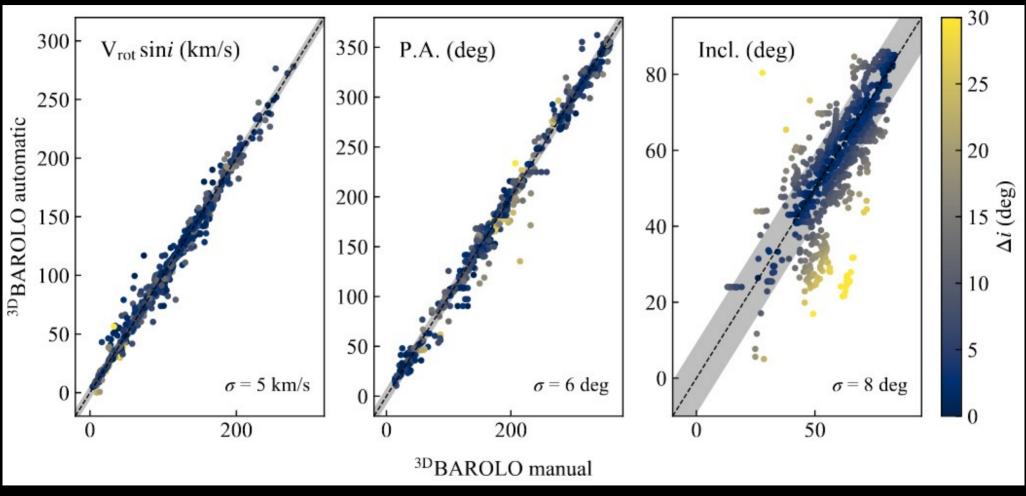
2. BHINGO: 3D kinematic models for ~1000 galaxies \rightarrow Factor 5 increase over existing samples (SPARC, Lelli+16)

Conclusions:

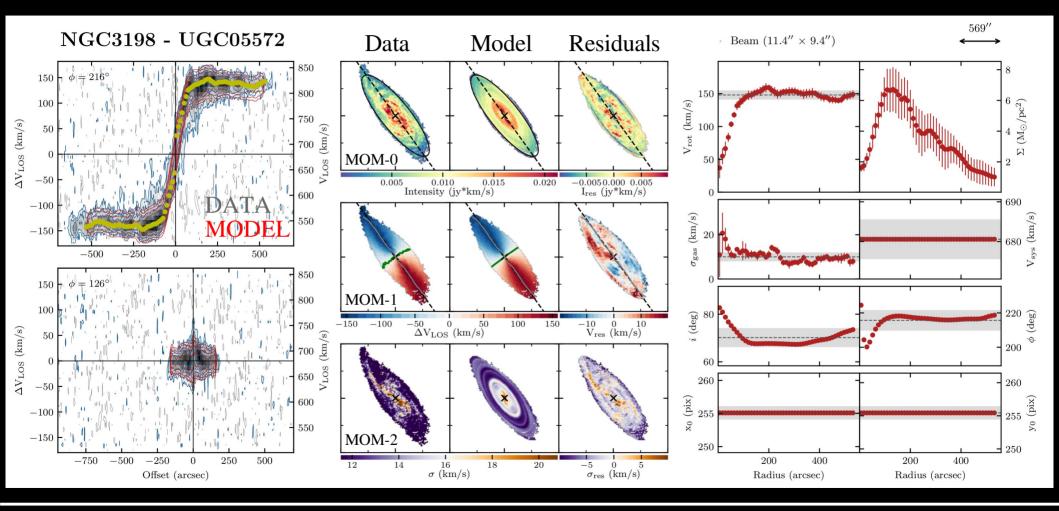
1. New era for galaxy dynamics with large HI samples \rightarrow Key science goal for SKA & pathfinders – <u>Italian expertise</u>!

2. BHINGO: 3D kinematic models for ~1000 galaxies \rightarrow Factor 5 increase over existing samples (SPARC, Lelli+16)

3. WALLABY@ASKAP is proceeding well

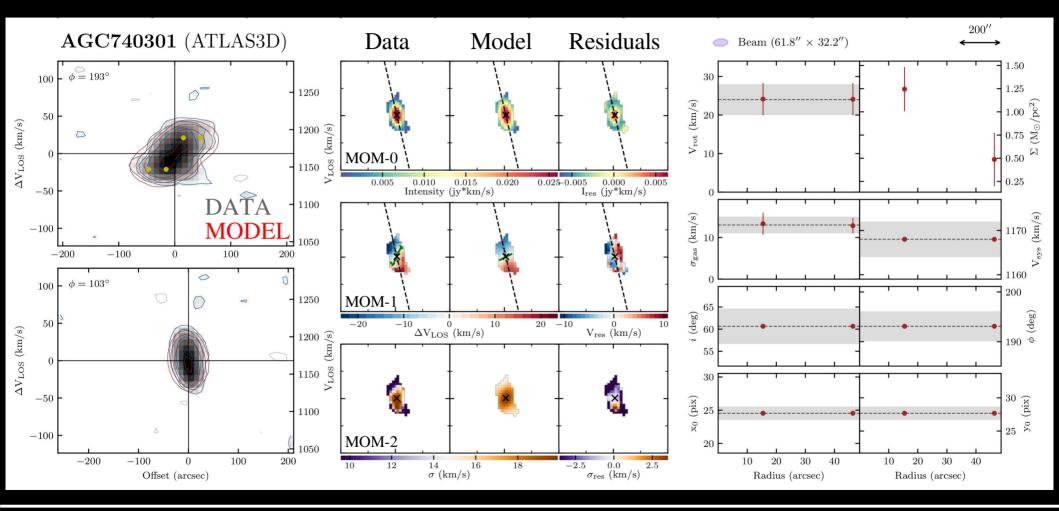

 \rightarrow Kinematic models for ~100 galaxies (a few 1000s by the end)

 \rightarrow Potential to unveil optically-dark HI-rich galaxies


Federico Lelli (INAF - Arcetri)

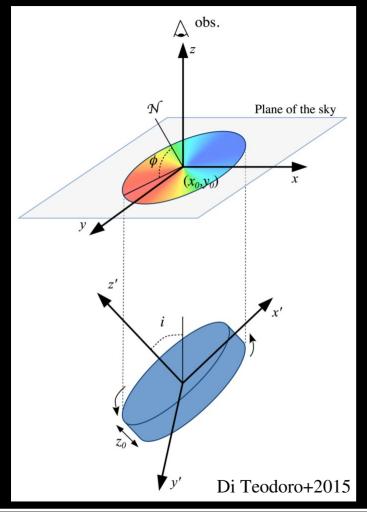
Automated versus Manual Fitting

Federico Lelli (INAF - Arcetri)


Example: Highly Resolved Galaxy

Federico Lelli (INAF - Arcetri)

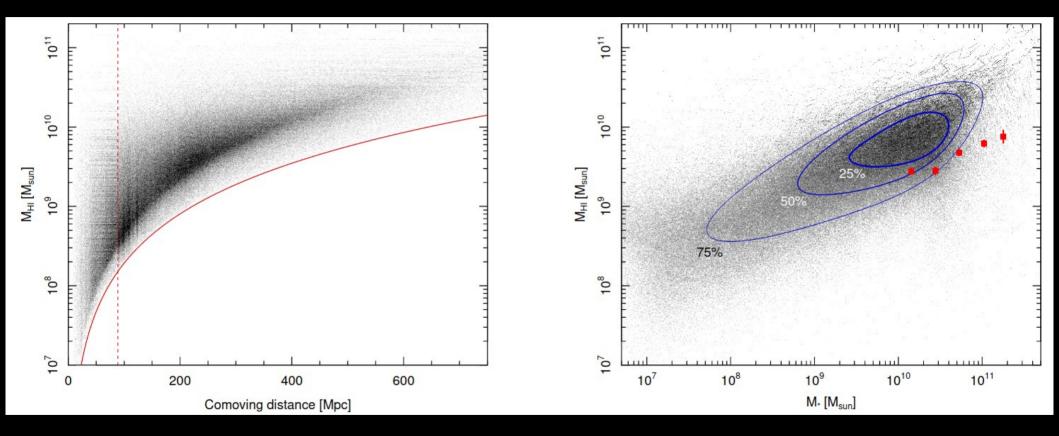
Galaxy Dynamics in the Era of Large HI Surveys


Example: Poorly Resolved Galaxy

Federico Lelli (INAF - Arcetri)

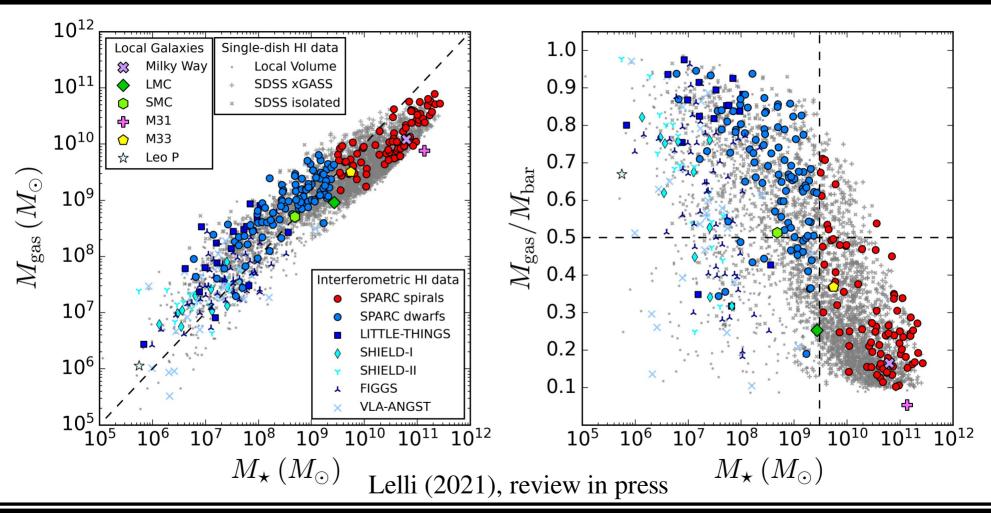
Galaxy Dynamics in the Era of Large HI Surveys

Deprojection from Sky Plane to Galaxy Plane

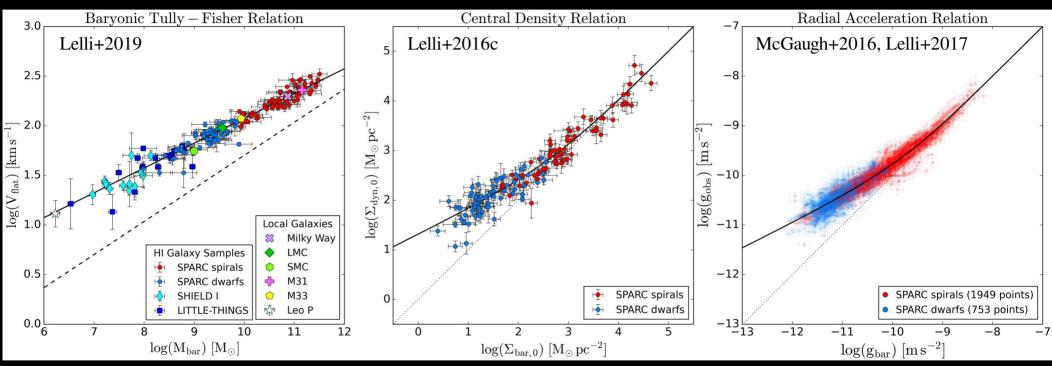

For circular orbits in a plane: $V_{los}(x, y) = V_{sys} + V_{rot}(R) \sin(i) \cos(\theta)$ $\cos(\theta) = f(x_0, y_0, PA)$

3D codes fit directly the cube bypassing the 2D velocity field \rightarrow strongly recommended to take observational effects into account:

- <u>BBarolo</u> (Di Teodoro & Fraternali 2015)
- FAT (Józsa+2007; Kamphuis+2015)
- KinMS (Davis+2013)


Federico Lelli (INAF - Arcetri)

WALLABY: Expected HI Mass Detections


Federico Lelli (INAF - Arcetri)

Gas Content in Star-Forming Galaxies (LTGs)

Federico Lelli (INAF - Arcetri)

Dynamical Laws for Rotation-Supported Galaxies Baryonic Property ↔ Dynamical Property (baryons + dark matter)

Outer Regions $(R \rightarrow \infty)$: Baryonic Mass *vs* Flat Velocity

Inner Regions $(R \rightarrow 0)$: Central Surface Densities

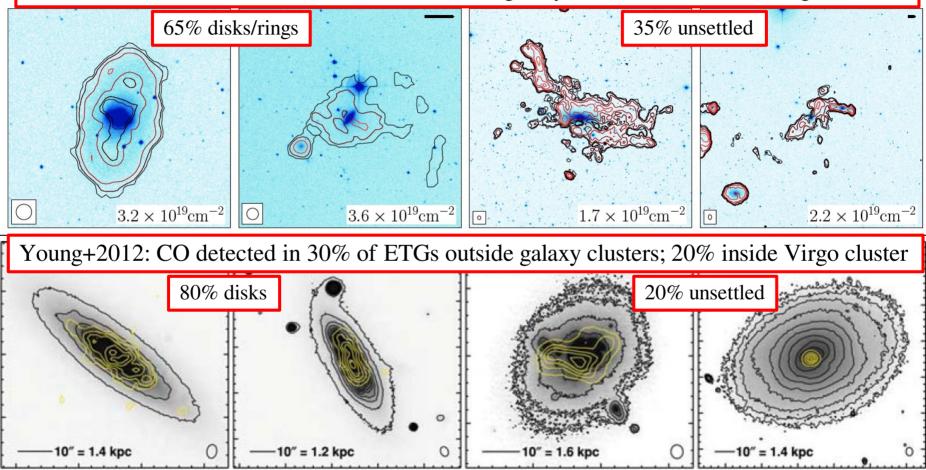
Spatially Resolved (∀R): Centripetal Accelerations

Federico Lelli (INAF - Arcetri)

Key Questions:

1 – Is there any intrinsic scatter in the dynamical laws?

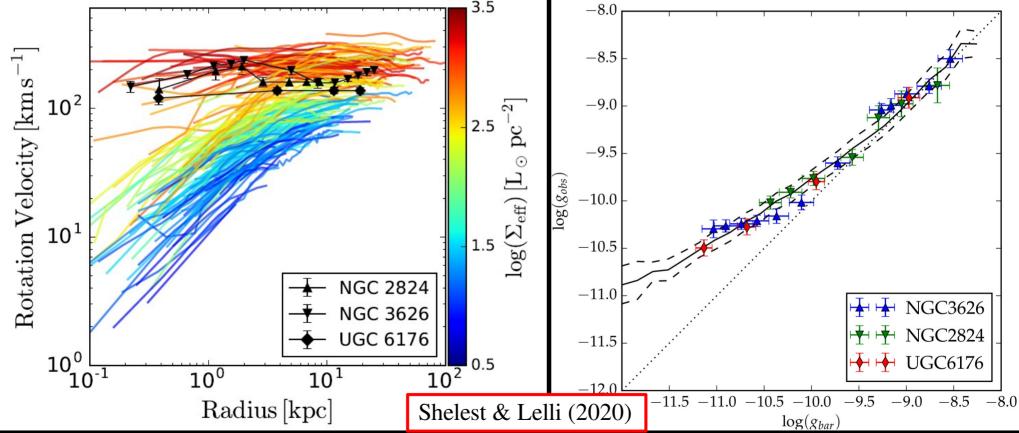
2 – Do their properties (slope, etc) depend on environment?


In ACDM: dynamical laws emerge from galaxy formation process
 → scatter & environment are key to distinguish different models
 In MOND: new fundamental Laws of Nature (akin Kepler's Laws)
 → scatter null or tiny, environment plays a role (Chae+2020, 2021)

Challenge: build large, homogeneous, unbiased kinematic samples

Federico Lelli (INAF - Arcetri)

Gas Content in Early-Type Galaxies (ETGs)


Serra+2012: HI detected in 40% of ETGs outside galaxy clusters; 10% inside Virgo cluster

Federico Lelli (INAF - Arcetri)

Galaxy Dynamics in the Era of Large HI Surveys

CO+HI Rotation Curves for three Lenticulars Similar rotation curves as HSB spirals Same Dynamical Laws as LTGs

Federico Lelli (INAF - Arcetri)

Jeans Equations (e.g. Binney & Tremaine 1987)

For a stationary axisymmetric system embedded in $\Phi(R, z)$:

$$V_{c}^{2} \equiv R \frac{\partial \Phi}{\partial R} = \overline{v_{\theta}}^{2} + \sigma_{R}^{2} \left[\frac{\sigma_{\theta}}{\sigma_{R}}^{2} - 1 - \frac{\partial \ln \rho}{\partial \ln R} - \frac{\partial \ln \sigma_{R}}{\partial \ln R} - \frac{R}{\sigma_{R}} \frac{\partial \overline{v_{R}} \overline{v_{z}}}{\partial z} \right]$$

$$\overline{v_{\theta}} = V_{rot} \text{ (rotation velocity)} \quad \sigma_{R} \sim \sigma_{hos} \text{ (line-of-sight velocity dispersion)}$$

Australian Square Kilometre Array Pathfinder

ASKAP capabilities:

- 36 x 12-m dishes
- Baselines: up to ~6 km
- Phased Array Feeds
- \rightarrow 36 primary beams
- \rightarrow F.o.V ~ 30 sq deg
- $v_{obs} = 0.7 1.8$ GHz

Galaxy Dynamics in the Era of Large HI Surveys

Federico Lelli (INAF - Arcetri)