

The cold gas component and jet-ISM interplay in nearby low-excitation radio galaxies

Ilaria Ruffa (Cardiff University/INAF-IRA)

In collaboration with: Isabella Prandoni (INAF-IRA), Robert A. Laing (SKAO), Timothy A. Davis (Cardiff University), Paola Parma (INAF-IRA), Hans de Ruiter (INAF-IRA), Rosita Paladino (INAF-IRA), Viviana Casasola (INAF-IRA), Joshua Warren (Oxford University), Martin Bureau (Oxford University), Filippo Maccagni (INAF-OAC), and many others

The Italian Route to the SKAO Revolution, 7 October 2021

In the local Universe jet-mode AGN associated to low excitation radio galaxies

(Heckman & Best 2014)

(Laing et al. 1994)

In the local Universe jet-mode AGN associated to low excitation radio galaxies

- Weak (or absent) low-ionization narrow emission lines (LINER-like optical spectra)
- Moderate radio luminosity (L_{1.4GHz}<10²⁵ W/Hz)

In the local Universe jet-mode AGN associated to low excitation radio galaxies

Weak (or absent) low-ionization narrow emission lines (LINER-like optical spectra) Moderate radio luminosity (L_{1.4GHz}<10²⁵ W/Hz) Mostly FRI (some FRII) radio morphology

In the local Universe jet-mode AGN associated to low excitation radio galaxies

(Salim et al. 2007)

Weak (or absent) low-ionization narrow emission lines (LINER-like optical spectra) Moderate radio luminosity (L_{1.4GHz}<10²⁵ W/Hz) Mostly FRI (some FRII) radio morphology Hosted by very massive ETGs (M_K≤-24, M_{*}≥10¹¹ M_☉) Old stellar population (red sequence galaxies)

The Southern Sample project

First systematic study of a volume-limited (z<0.03) sample of **eleven LERGs** selected from the Ekers et al. (1989) sub-sample of the Southern Parkes 2.7 GHz Survey

Radio	Host	z	S _{1.4}	Log P _{1.4}	Jet	FR	
	source	galaxy		(Jy)	(WHz^{-1})		class
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	PKS 0007-325	IC 1531	0.0256	0.5	23.9	1	I
	PKS 0131-31	NGC 612	0.0298	5.6	25.1	2	I/II
	PKS 0320-37	NGC 1316	0.0058	150	25.1	2	I
	PKS 0336-35	NGC 1399	0.0047	2.2	23.0	2	I
	PKS 0718-34		0.0284	2.1	24.6	2	II
	PKS 0958-314	NGC 3100	0.0088	0.5	23.0	2	I
	PKS 1107-372	NGC 3557	0.0103	0.8	23.3	2	I
	PKS 1258-321	ESO 443-G 024	0.0170	1.2	23.9	2	I
	PKS 1333-33	IC 4296	0.0125	4.5	24.2	2	I
	PKS 2128-388	NGC 7075	0.0185	0.9	23.8	2	I
	PKS 2254-367	IC 1459	0.0060	1.2	23.9	2*	1.

AGN feeding/feedback loop in LERGs mapping different galaxy components (stars, hot/warm/cold gas, dust, jets)

VLT/VIMOS + MUSE

IFU spectroscopy (Warren et al. in prep.)

Archival HST data (or from ground-based telescopes; Ruffa et al. 2019a, Ruffa et al. 2021)

The dataset

APEX CO (2-1) integrated spectra (Prandoni et al. 2010, Laing et al. in prep.)

ATCA HI observations . (Maccagni et al. in prep., Ruffa et al. in prep) ALMA Cycle 3 CO (2-1) observations (Ruffa et al. 2019a,b)

Archival plus proprietary VLA high-res. imaging (Ruffa et al. 2019a,2020)

VLT/VIMOS + MUSE

IFU spectroscopy (Warren et al. in prep.)

Archival HST data (or from ground-based telescopes; Ruffa et al. 2019a, Ruffa et al. 2021)

The dataset

APEX CO (2-1) integrated spectra (Prandoni et al. 2010, Laing et al. in prep.)

ATCA HI observations . (Maccagni et al. in prep., Ruffa et al. in prep)

Archival plus proprietary VLA high-res. imaging (Ruffa et al. 2019a,2020)

Properties of the molecular gas (Ruffa et al. 2019a,b)

Molecular gas content

Cycle 3 CO(2-1) ALMA observations of 9 targets \rightarrow 6 CO detections

CO kinematics

Detailed modelling of the CO kinematics using the KinMS tool (Davis et al. 2013)

IC 1531

NGC 3557

NGC 7075

NGC 612

Gas kinematics well reproduced by **axysimmetric models** assuming purely circular motions → Bulk of the gas in **ordered rotation. Possible link with low-accretion rates in LERGs**

Ruffa et al. 2019b

CO kinematics

Signs of asymmetries and/or perturbations are ubiquitous

Jets and molecular gas (Ruffa et al. 2020)

Jet-ISM interactions

Jet-ISM interaction processes sensitive to jet-disc relative orientation \rightarrow stronger for $\vartheta_{dj} \ge 45 \text{ deg}$

(Mukherjee et al. 2018b)

Jet-ISM interactions

Jet-ISM interaction processes sensitive to jet-disc relative orientation \rightarrow stronger for $\vartheta_{dj} \ge 45 \text{ deg}$

(Mukherjee et al. 2018b)

JVLA observations

• CO inclinations from kinematic modelling

• Jet inclination from high-resolution JVLA data at 10 GHz for five CO-detected sources

JVLA observations

• CO inclinations from kinematic modelling

• Jet inclination from high-resolution JVLA data at 10 GHz for five CO-detected sources

Jet/disc relative inclination

Once a **3D jet/disc geometry** is assumed **→ intrinsic relative inclination** angles

- Wide range of angles but marginal preference around 45deg: consistence with the statistical analysis of Verdoes Kleijn & de Zeeuw (2005) but for the first time in 3D
- No simple relation between the gas rotation and radio jet axes (defined by the axis of the inner accretion disc and/or the spin of the black hole)

Jet/disc relative inclination

Once a **3D jet/disc geometry** is assumed **→ intrinsic relative inclination** angles

- Wide range of angles but marginal preference around 45deg: consistence with the statistical analysis of Verdoes Kleijn & de Zeeuw (2005) but for the first time in 3D
- No simple relation between the gas rotation and radio jet axes (defined by the axis of the inner accretion disc and/or the spin of the black hole)
- Support for jet-ISM coupling in NGC 3557

- Disc disruption in the direction of the northern jet
- Jet morphological and surface brightness asymmetries
- [OIII] EW enhancement along the jet axis
- Enhanced line ratios along the path of the jet → higher gas excitation (T_{ex}≫50 K)

Origin of the molecular gas (Ruffa et al. 2019a,b,2021)

- Detection of significant amount of cold gas in gas poor ETGs → recent regeneration
- Origin of the cold gas still debated: either internal (stellar mass loss, hot halo cooling) or external (interactions or minor mergers)
- Hot halo cooling (either smooth or chaotic) most likely mechanisms for LERGs at the centre of groups and clusters
- Incidence of hot halo cooling in more isolated LERGs not clear: galaxy-galaxy interactions may have a major role (e.g. Sabater et al. 2013)

- Detection of significant amount of cold gas in gas poor ETGs → recent regeneration
- Origin of the cold gas still debated: either internal (stellar mass loss, hot halo cooling) or external (interactions or minor mergers)
- Hot halo cooling (either smooth or chaotic) most likely mechanisms for LERGs at the centre of groups and clusters
- Incidence of hot halo cooling in more isolated LERGs not clear: galaxy-galaxy interactions may have a major role (e.g. Sabater et al. 2013)

	Target name	Environment		
	IC 1531	isolated		
cted	NGC 612	pair/companion		
sity	NGC 3100	pair/companion		
	NGC 3557	poor group		
	IC 4296	cluster/companion		
	NGC 7075	pair/companion		

Five out of six CO-detected sources are in low-density environments

Dust and molecular gas

Gas cooling from hot haloes expected (e.g. Valentini & Brighenti 2015) and observed (e.g. Tremblay et al. 2018, Temi et al. 2018) essentially dustless (D/G≈10⁻⁵)

Dust and molecular gas

Gas cooling from hot haloes expected (e.g. Valentini & Brighenti 2015) and observed (e.g. Tremblay et al. 2018, Temi et al. 2018) essentially dustless (D/G≈10⁻⁵)

Multi-wavelength indicators (e.g. molecular gas/stars kinematic misalignments, sub-solar metallicities) -> external origin strongly favored in at least two cases

Important insights from the large-scale cold gas component -> ATCA HI observations recently acquired

Multi-wavelength indicators (e.g. molecular gas/stars kinematic misalignments, sub-solar metallicities) -> external origin strongly favored in at least two cases

Important insights from the large-scale cold gas component \rightarrow ATCA HI observations recently acquired

Multi-wavelength indicators (e.g. molecular gas/stars kinematic misalignments, sub-solar metallicities) -> external origin strongly favored in at least two cases

Important insights from the large-scale cold gas component -> ATCA HI observations recently acquired

SKA will allow us to study the radio jet and cold gas components with unprecedented sensitivity and resolution \rightarrow The SKA Revolution

Concluding remarks

MOLECULAR GAS CONTENT

 Rotating CO discs are very common in LERGs -> considerable amounts of cold gas confined in the inner (sub-)kpc scales

MOLECULAR GAS KINEMATICS

- Bulk of the gas in ordered rotation (at least at the current spatial resolution) -> this may be consistent with low-accretion rates in LERGs
- Asymmetries, perturbations and/or non-circular motions are ubiquitous
 → the observed discs
 may be an essential link in the fueling/feedback of LERGs

JETS AND MOLECULAR GAS

- Wide range of jet/disc relative orientation angles but marginal preference around 45deg -> no simple axi-symmetry between black hole and inner/outer disc
- NGC 3557 object with the largest $\vartheta_{dj} \rightarrow support for jet-ISM coupling$
- NGC 3100 most interesting case -> evidence of both gas inflow and jet-ISM interaction

ORIGIN OF THE MOLECULAR GAS

- Dust/molecular gas co-spatiality -> difficult to reconcile with hot gas cooling
- External origin strongly favoured in sources with companions -> support for galaxy-galaxy interaction having a major role for LERGs in low-density environments

Local AGN population

Two main AGN modes in the low-redshift (z<0.1) Universe -> different dominant type of feedback

(Heckman & Best 2014)

Jet inclination

FRI jets are intrinsically identical, axisymmetric flows of particles initially relativistic and decelerating on kpc-scales

Apparent differences due to relativistic aberration \rightarrow the brightness difference between the jet/counter jet (i.e. sidedness ratio) give information on the jet inclination

Jets and CO discs

Assumption: Jets are intrinsically symmetrical, relativistic flows -> sidedness ratio

$$R = \frac{I_{\rm j}}{I_{\rm cj}} = \left(\frac{1 + \beta \cos\theta}{1 - \beta \cos\theta}\right)^{2+\alpha}$$

•
$$\theta$$
 (0 $\leq \theta \leq \pi/2$): angle to the l.o.s.

•
$$\beta = v/c$$
 (v = flow velocity)

• α : jet spectral index

 β and θ cannot be derived independently \rightarrow Laing & Bridle (2014) provide a calibration of the relation between R and θ

$$\theta = \arccos\left(\frac{1}{\beta}\frac{R^{\frac{1}{2+\alpha}} - 1}{R^{\frac{1}{2+\alpha}} + 1}\right)$$

• $\beta = 0.75$ (best-fit); $\alpha = 0.6$ (S $\propto \nu^{-\alpha}$)

Ruffa et al. 2020

Cycle 6 follow-up ALMA observations of NGC 3100 targeting different molecular transitions: CO(1-0), CO(3-2), SiO, HNCO, HCO+ (Ruffa et al. 2021, submitted)

CO(1-0), CO(2-1) and CO(3-2) observed velocity field

 Substantial differences in the distribution of the three lines -> higher gas excitation in the central regions

Ruffa et al. 2021, submitted

Cycle 6 follow-up ALMA observations of NGC 3100 targeting different molecular transitions: CO(1-0), CO(3-2), SiO, HNCO, HCO+ (Ruffa et al. 2021, submitted)

- Substantial differences in the distribution of the three lines -> higher gas excitation in the central regions
- Hints of inflow/outflow motions from velocity residuals and PVDs
- Enhanced line ratios along the path of the jet ($T_{ex} \gg 50$ K)

Ruffa et al. 2021, submitted

Internally generated cold gas is mostly expected to **co-rotate** with stars

Such significant discrepancies consistent with an external gas origin (e.g. Davis et al. 2011)

Internally generated cold gas is mostly expected to **co-rotate** with stars

Internally generated cold gas in ETGs expected to have high metal enrichments

$$12 + log_{10}(O/H) = 12 + \log_{10}\left(\frac{4.57088 \times 10^{-2}}{M_{\text{gas}}/M_{\text{dust}}}\right)$$
(Davis et al. 2015)

Gas-phase metallicities significantly
sub-solar (<7.9) in NGC 3100

Even when gas and stars **co-rotate** an external origin **cannot be excluded**

Ruffa et al. 2019b

Ruffa et al. 2019b

CO(3-2)/CO(1-0) flux

density ratio + 10GHz cont 6 27 High velocity kinematic components in addition to the \bullet 24 main rotational one \rightarrow outflow with v \leq 200 km/s 21)/CO(1-0) Far less extreme than known cases of jet-induced DEC offset(") L N 0 N sub-kpc scale outflows -> negligible impact on the 0 12 Ö 00 host galaxy 9 Implications for interactions involving low-power -4⊦ Near side 6 radio jets 500 p -4 (Ruffa et al. 2021, submitted) RA offset(") Region D Region C B Main component Main component Second component Second component Total Total <u>/</u>m/ <u>۲|m) xnl</u> 200 300 400 -400-300-200100 200 300 -300-200-100100 -100400 -4000 LSRK velocity (km s⁻¹) LSRK velocity (km s^{-1})