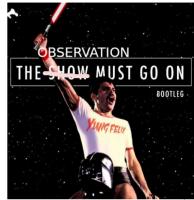
The Third National Workshop on the SKA Project

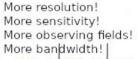
Italian Role in SKA-Safe

G.Comoretto, C.Baffa for the Italian Cream Team

04 Oct 2021



SKA software system - challenges

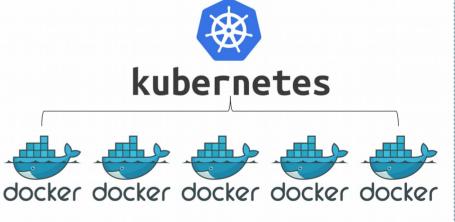

- Same software for two different telescopes
- Huge system
 - 100K elements. Faults will happen
 - 10⁵-10⁶ Flexible interconnections
 - Tolerant to local failures and configuration changes
- Flexibility

NAF

- Automatic dynamic scheduling
- Concurrent observations: subarrays (up to 16)
 - Completely independent
 - Resources (stations, correlator units) shared between subarrays
- Work organization:
 - scattered teams
 - Different cultures, time zones, expertises

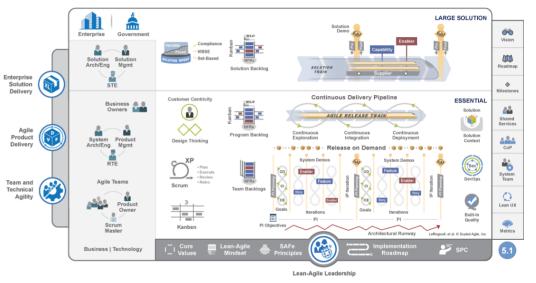
What do we want?

When we want them?


All together!

SKA software system - solutions

- Tango controls
 - Distributed control system for large installations
 - Widely supported
- Containers: Docker, kubernetes
 - Virtual environments, assembled from pre-compiled blocks
 - Easy to orchestrate, deploy, upgrade
 - Resilient to failures
 - Extra layer of complexity
- SKA base classes
 - Find commonalities in the system and program them once
 - Include generic features like hardware support, power on/off, simulation, health monitoring
 - Now at version 11, still evolving (too fast)
- Generic and powerful development and control tools
 - Emphasis on Graphic User Interfaces



Work organization: the SAFe environment

- Management architecture for large industrial projects
 - High overhead: 10-15% of the time spent planning
 - Small teams, self organized
 - Work partitioned hierarchically:
- Good
 - Splits things in manageable units
 - Forces to plan things
 - Eases collaboration
- Limits
 - Requires dedicated people or overhead is too high
 - Difficult to plan workload in a research environment
 - SKA SAFe is a bit "tamed" for a research environment

€ :

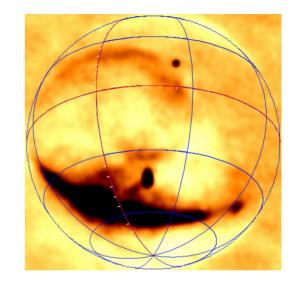
INAF

SKA Italian SW Areas

INAF

4 main topics:

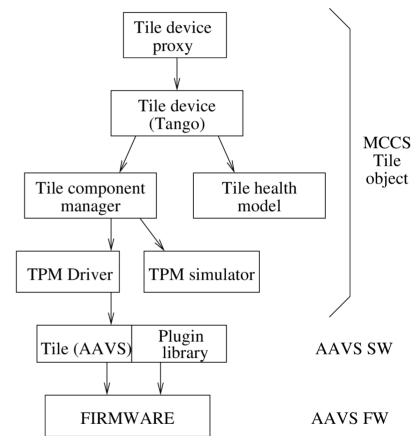
System infrastructure and services	M.DiCarlo
Low Frequency Aperture Array interface to Local Monitor and Control	G.Comoretto, S. Chiarugi, C. Belli
Control and monitoring of Central Signal Processing	E.Giani, G.Marotta, C.Baffa
Taranta Graphics User Interface engine	M. Canzari, V.Alberti


People in blue have also administrative tasks: PO (CB) and SM (VA)

LFAA Software & Firmware

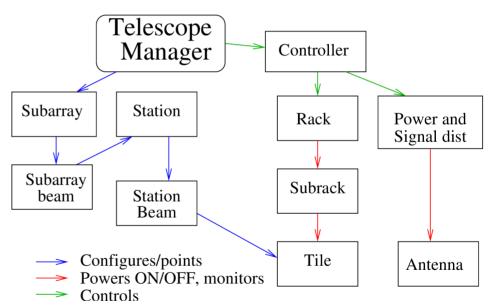
LFAA: the "dishes" of SKA low. Stations of 256 antennas

- From a (good) protype to the final thing
 - Standalone LFAA system
 - Good enough for all-sky mapping with single station
- Firmware
 - Firmware is managed like the software
 - 90% compete. Remaining 10% requires the other 90% of the effort
 - Improve code quality: Continuous integration, automatic unit testing
- Low level software:
 - Enough functionality to control a single station
 - Represent the lower layer of the SKA control software



LFAA Software

- MCCS: the local monitor and control for SKAlow stations
 - Configures and monitors the hardware
 - Based on Tango Controls, but lots of add-ons to standardize common functions
 - Each SKA device is composed of 5-8 interacting objects
- Possible to share stations between subarrays. Example configuration with 3 subarrays
 - Full array for high resolution HI mapping (150 MHz BW, at z=3-20)
 - Pulsar search (100 MHz bandwidth)
 - High sensitivity narrow band survey using multiple beams (8 beams x 6.25 MHz bandwidth)



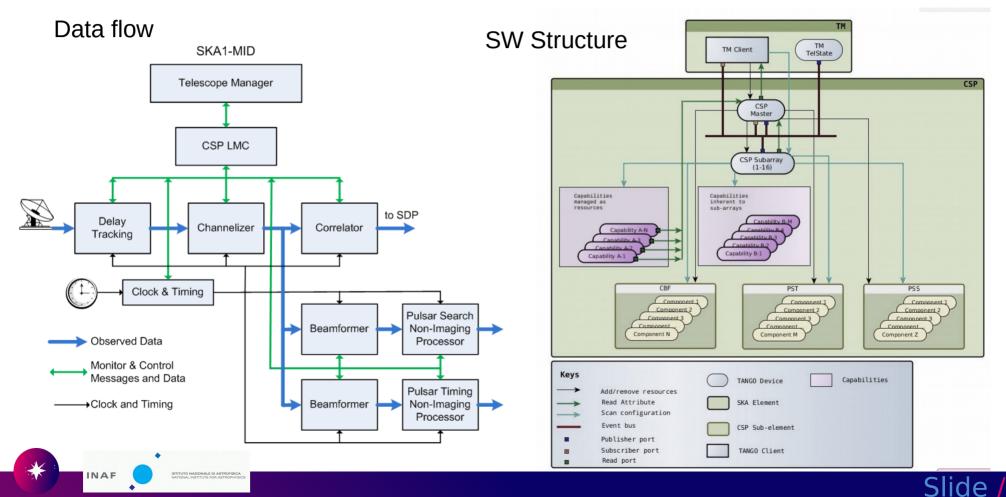
INAF

MCCS Software

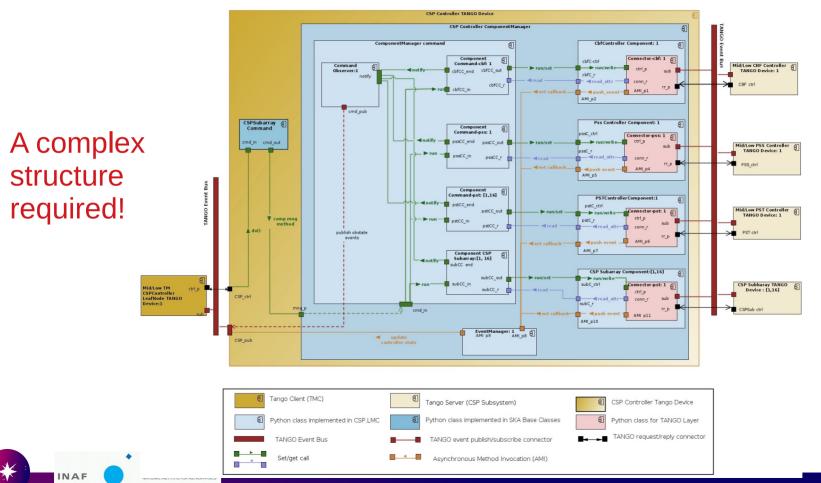
- Complex structure, must manage:
 - Independent beamforming (48 beams/station)
 - Allocation of beams to subarrays
 - Calibration per beam/station
 - Fault management
- Hardware elements:
 - 15,000 physical devices
 - 30,000 IP addresses
 - 1 Million control/monitor points
 - 150,000 Tango devices
- INAF: hardware element interface
 - Tile: signal processing platform for 16 antennas
 - Subrack: power and signal distribution for ½ station
 - Rack: Whole LFAA signal processing for 2 stations
 - PASD: Station RF and power electronics on the field

MCCS software structure

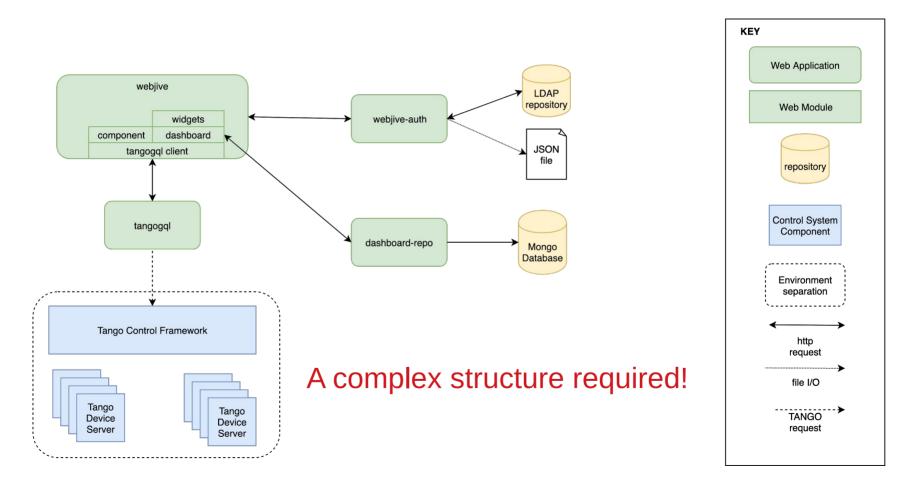
Cream Team Effort: Why?


Two main areas of work:

- CSP control software:
 - Central Signal Processing: main data processing area.
 - Need to be managed in a fast, versatile and efficient way:
 - A wrong control design which let observe only a portion of time is equivalent to have a smaller telescope
 - Enable multiple possibilities as different and complex configuration and commensal observations.
- Taranta GUI engines:
 - Started as engineering interface now evolving towards a general one.
 - Web only: no local installation required. Very handy but some complexity implied.



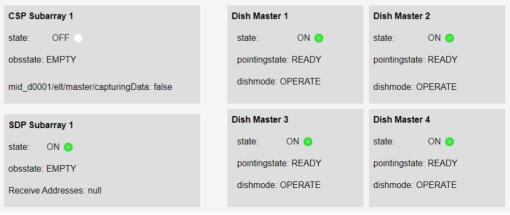
CSP Control and Monitor.



CSP Software Structure

Taranta: a GUI infrastructure

Taranta Example


M Inbox (598) - valentina.alberti@in 🗙	🗙 🔟 INAF Istituto Nazionale di Astrofi 🗴 💫 2021-09-23 MVP Meeting - Softy 🗴 🌍 compact / light - Webjive 🛛 🗙 🕇	
\leftrightarrow \rightarrow C 🔒 k8s.stfc.skao.int,	t/integration-mid/taranta/dashboard?id=6110ced80c0dd60017a777c5&mode=run	☆
Devices Dashboards 🔎	Second Compact / light	

Observation Control

Central Node	
TelescopeOn	TelescopeOff
AssignResources	
ReleaseResources	
TMC Subarray 1	
End Abort	Restart ObsReset
Configure	
Scan	

Observation Monitoring

Central Node							
state:	OFF O	telescopeState: STANDBY					
TMC Subarray 1							
state:	ON 🔵	receptoridlist No data					
obsstate	e: EMPTY						

A more Complex Taranta Example

Master Devic	es: State									
TMC ska_	mid/tm_central/central_node OFF	X	SDP mid_sdp/elt/master Of	••		Switch off all elements Switch on all ele	ments			
ska_	mid/tm_leaf_node/sdp_master ON 🔵	×	CSP mid_csp/elt/master ST	ANDBY 😑 🛛 🗙		Switch off sdp elements				
ska_	mid/tm_leaf_node/csp_master FAULT 🔵	×	CBF mid_csp_cbf/sub_elt/n	naster STANDBY 😑 🛛 🗙		switch of csp elements DevVarStringArray	X			
Subarray 1:S	tales									
TMC ska_	mid/tm_subarray_node/1 ON 🔵	×	SDP mid_sdp/elt/subarray_	1 ON 💿 🚺	CBF I	FSP id_csp_cbf/fspcorrsubarray	mid_cs	p_cbf/fsppsss	ubarray	
ska_	mid/tm_leaf_node/sdp_subarray01 ON 🔵	×	CSP mid_csp/elt/subarray_	01 OFF	1	corr slice 01_01 OFF	pss sl	ce 01_01 C	DFF X	
ska_	mid/tm_leaf_node/csp_subarray01 ON 🔵	×				corr slice 02_01 OFF	pss si	ce 02_01 C	= =	
						corr slice 03_01 OFF X		ice 03_01 C		
						corr slice 04_01 OFF X	pss si	ce 04_01 C	AFF	
Subarray 1: 0	ObsStates									
TMC ska_	mid/tm_subarray_node/1/obsstate: EMPTY	A R	SDP mid_sdp/elt/subarray_	1/obsstate: EMPTY	CBF F	FSP nid_csp_cbf/fspcorrsubarray	mid ce	p_cbf/fsppsss	ubarray	
			CSP	01/obsstate: EMPTY		corr slice 01_01 obsstate: IDLE R			bsstate: IDLE	
			mid_csp/elt/subarray_	01/obsstate: EMPTY		corr slice 02_01 obsstate: IDLE R		_	bsstate: IDLE	
						corr slice 03_01 obsstate: IDLE	pss si	ce 03_01 o	bsstate: IDLE	
						corr slice 04_01 obsstate: IDLE	pss sl	ce 04_01 o	bsstate: IDLE	
Sensors 000	1	Sensors	0002	:	Sensors 00	03		Sensors 0004		
TMC		TMC			TMC			TMC		
ska_mid/tr	n_leaf_node/d0001 ON 🔵 🛛 🗙	ska_r	nid/tm_leaf_node/d0002 ON 🔵	×	ska_mid	/tm_leaf_node/d0003 ON O	3	ska_mid/tm	_leaf_node/d0004 ON 🔵	×
DishMaster	0001 FP LP OP	DishMa	aster 0002	FP LP OP	DishMaste	er 00003 FP LP	DP	DishMaster (000	FP LP OP
mid_d000	1/ell/master/observingstate: IDLE	mid_c	10002/elt/master/observingstate:	IDLE	mid_d00	03/elt/master/observingstate: IDLE		mid_d0004	/elt/master/observingstate:	IDLE
mid_d000	1/elt/master/healthstate: OK	mid_c	30002/elt/master/healthstate: OK		mid_d00	03/elt/master/healthstate: OK		mid_d0004	/elt/master/healthstate: OK	
mid_d000	1/ell/master ON 🔵	mid_c	10002/ell/master ON 🔵		mid_d00	03/ell/master ON 🔵		mid_d0004	/elt/master ON 🔵	
CBF		CBF			CBF			CBF		
mid_csp_	cbf/vcc_band	mid_o	csp_cbf/vcc_band		mid_csp	_cbf/vcc_band		mid_csp_c	bf/vcc_band	
12/001	OFF O	12/0	02 OFF		12/003	OFF		12/004	OFF	
3/001	OFF	3/00	0FF O		3/003	OFF		3/004	OFF	
4/001	OFF	4/00	2 OFF		4/003	OFF		4/004	OFF	
5/001	OFF O	5/00	2 OFF		5/003	OFF		5/004	OFF	
mid csp	cbf/vcc_sw	mid e	csp_cb@vcc_sw		mid csp	_cbf/vcc_sw		mid_csp_c	bf/vcc_sw	
12/001	OFF O	12/0			12/003			12/004	OFF O	
2/001	OFF	2/00	2 OFF		2/003	OFF		2/004	OFF	

Thank you

