Comparing APERTIF HI statistics with baryonic scaling relations in the Local Universe

Leslie Hunt* (INAF-Osservatorio Astrofisico di Arcetri, Firenze); Betsey Adams, Kelley Hess (ASTRON, Groningen); Marco Scodeggio* (INAF-IASF Milano); Crescenzo Tortora* (INAF-OA Capodimonte, Napoli); Gabriella De Lucia* (INAF-OA Trieste), and the APERTIF team (* APERTIF external collaborators) accretion increases gas supply and modifies metal fraction

ISM replenishment and feedback

massive stars exploding as supernovae and accreting supermassive black holes impart thermal + mechanical energy to the circumgalactic medium, enriching it with metals and dust

HI + H₂ + dust grains

star formation

baryonic cycling in the interstellar medium (ISM)

stellar evolution

stellar winds erode ISM and evacuate cavities around newly-formed stars

Atomic gas HI is arguably the most important constituent of the ISM for galaxy evolution; it is being accreted onto galaxies from the Intergalactic Galactic Medium and provides the gas reservoir for star formation through conversion to H_2

Estimating HI mass in nearby galaxies with MAGMA

Local benchmark for baryonic cycling: Metallicity and Gas for Mass Assembly sample (MAGMA) at $z \approx 0$

MAGMA with homogeneous HI, H₂ (from CO), O/H, M_{star}, SFR measurements for **392 galaxies** spans an unprecedented range in parameter space:

- ✓ 5 orders of magnitude in M_{star}
- ✓ factor of 60 in metallicity Z (PP04N2)
- ✓ > 4 orders of magnitude in SFR and $M_{\rm HI}$, $M_{\rm H2}$

MAGMA is essentially a "main sequence" sample

Ginolfi+ (2020)

HI dominates H₂ in overall MAGMA gas mass budget but HI has more scatter

Hunt+ (2020)

Scaling relations for H_2 with M_{star} , SFR show less scatter than those for HI

prediction: $\log MH_2 = (0.59 \pm 0.04) \log(M_{star}) + (0.35 \pm 0.04) \log(SFR) + (3.02 \pm 0.36)$

Hunt+ (2020)

Comparing predicted to observed HI mass with APERTIF

APERTIF blind HI survey in progress

DR1: first year of survey observations (1 July 2019 - 30 June 2020). Released observations cover just over 1000 deg² of sky (here \sim 450 deg²).

https://www.astron.nl/telescopes/wsrt-apertif/ apertif-dr1-documentation/overview/ released-observations/

HI processed with subset of cubes using SoFiA-2 (Source Finding Application; Serra+ 2015), as described in **Hess+ (2021, in prep.)**

Preliminary matching SDSS with APERTIF HI detections

1231 HI sources identified, 179 matched with SDSS galaxies

Preliminary matching SDSS with APERTIF HI detections

1231 HI sources identified, 179 matched with SDSS galaxies

Comparing MAGMA HI predictions with APERTIF HI detections

Different HI scaling for HI-selected and mass-selected samples

Comparing MAGMA HI predictions with APERTIF HI detections

Different HI scaling for HI-selected and mass-selected samples

10 Predicted log(M_{HI} / M_{sun}) 9 8 7 6 10 6 8 9 APERTIF log(M_{HI} / M_{sun})

Problems with SDSS for very low-mass galaxies; bright clumps embedded in low surface brightness envelopes

Need more reliable stellar mass estimates for accurate comparison

SDSS images of galaxies with (purported) M_{star} : 7 $\leq \log(M_{star}/M_{\odot}) \leq 8$

Conclusions

APERTIF ongoing HI survey is functioning superbly, results statistically consistent with previous HI surveys (e.g., ALFALFA)

Comparisons between HI- and optically/mass-selected surveys show very different HI scaling relations; potential problems with SDSS at low surface brightness

Selection effects will be paramount when connecting gas content in local galaxies with high redshift