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The Coma radio halo 

van Weeren et al (2021)
Radio halo profile: 
Ellipsoidal exponential fit 

 

r1 ~355 kpc 
r2~ 268 kpc 

P(144 MHz) ~1.47 1025 W/Hz

I(r) = I0e
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XMM-Newton mosaic 
all 54 archival obsid re-processed (credits Zhang & Simionescu)

The Coma radio halo: thermal- non thermal 
correlation

jX ∝ n2
e (kT)1/2 jR ∝ N0B(δ+1)/2

LOFAR 144 MHz observations
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Radio halo brightness fluctuations

Scatter of radio brightness  
higher at the cluster periphery



Trying to decipher the re-acceleration mechanism

Primordial magnetic field B0=0.1nG at z=30

cluster “Coma-like” M ~1015 Msun

Dedner formulation MHD 2563 cells + 8 levels 

Projected mean magnetic field at 
increasing resolution, up to 4 kpc

Vazza et al. (2018)

Good match with RM data on Coma
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Can we reproduce the observed scatter of radio vs 
X ray?

Solenoidal component Compressive component B2                                            

The observed scatter is  due to the distribution of particles, spatial and/or energetic



Different trends in the centre and periphery?

In the inner halo core 
 IR ∝ I0.43±0.8

X

In the halo outskirts
 IR ∝ I0.57±0.3

X

Halo powered by different turbulent modes in the 
core and in the outskirts?
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Coma AGN



Conclusions

- Stepping into new territory to decipher 
particle acceleration mechanisms 

- Large field of view: a lot of physics to be 
learnt (AGN, halos, relic, new sources!)


