SKA continuum observations to study star formation in nearby galaxies

Rosita Paladino INAF - IRA

Some still open questions about star formation:

★ Importance of local (disk or cloud instability) versus global effects (spiral density waves, tidal forces, magnetic fields) in triggering SF.

* How the properties of SF depend on various environmental parameters

* How SF might differ in nuclear regions or in burst and quiescent modes

★ Which is the role of the relativistic phase (cosmic rays and magnetic field) in SF processes

Nearby galaxies are crucial to answer!

Radio – FIR spectral energy distribution

Radio continuum emission from galaxies

- Synchrotron
- Free-free
- AME
- Thermal dust > 100 GHz

Radio – FIR spectral energy distribution

Radio continuum emission from galaxies

- Synchrotron
- Free-free
- AME
- Thermal dust

SKA-1 v bands

Spectral index to identify their nature

Bremsstrahlung (free-free) emission

Synchrotron emission

Global RC-SFR correlation for neaby galaxies @ < 30Mpc

LOFAR 0.144 GHz data Heesen et al. ~ submitted

- v dependent slope of the correlation due to electron diffusion
- Dependence of the spatially resolved spix on SFR

Higher spatial resolution (~6") studies are ongoing

- The complex physics behind the correlations is not completely understood
 - CR acceleration and transport
 - Magnetic field amplification
 - Dependence on galaxies environments
- To calibrate radio emission as SF tracer we would like to have a census of compact SF products (from young HII regions, to SSCs, to SNe and their remnants)

The dream!

Galactic Center Meerkat image @ 1.4 GHz --- 6" resolution $\rightarrow \sim$ 0.23 pc Heywood 2019

The reality!

This kind of studies can be done in very few nearby objects

M82 @ 3.2 Mpc Starburst galaxy

5GHz observations @ 0.75 pc scale e-MERLIN+VLA

Muxlow et al., 1994, Fenech et al, 2008

SKA-1 mid imaging improvement compared to current VLA (A+B+C+D configuration)

Braun's slides @ skaengcon16

Expected radio emission from a typical non-thermal source (Cas A) and a thermal one (W49 A)

SNR Cas A @ 2.8 kpc

W49 A @ 14.1 kpc

Distance	Cas A (μ Jy)			W49A (µJy)			
Mpc	1.4	5	8 GHz	1.4	5	8 GHz	
10	177	58	48	93	114	131	
25	28	9	8	15	18	21	
50	7	2.3	2	3.7	4.6	5	
75	3	1	0.8	1.7	2	2.3	
100	2	0.6	0.5	0.9	1.1	1.3	

Paladino et al. 2015

Expected radio emission from a typical non-thermal source (Cas A) and a thermal one (W49 A)

Band	Freq (MHz)	Max res (arcsec)	rms, 1hr (µJy/beam)				
	SKA-1 low						
	0.05-0.35	4	14				
	SKA-1 mid						
1	350-1050	0.7	4.4				
2	950 - 1760	0.4	2	Distance	Cas A (µJy)		μJy)
5a	4600 - 8500	0.08	1.3	Mpc	1.4	5	8 GH
5b	8300-15300	0.04	1.2	10 25	177 28	58 9	48 8

https://www.skatelescope.org/technical/info-sheets/

Distance	Cas A (μ Jy)		W49A (µJy)			
Mpc	1.4	5	8 GHz	1.4	5	8 GHz
10	177	58	48	93	114	131
25	28	9	8	15	18	21
50	7	2.3	2	3.7	4.6	5
75	3	1	0.8	1.7	2	2.3
100	2	0.6	0.5	0.9	1.1	1.3

Galaxies with Diam > 120 arcsec @ distances up to 50Mpc from z0MGs (Leroy et al., 2019)

< 50 Mpc 226 < 20 Mpc 159 < 10 Mpc 54

SKA-1 MID spatial scales achievable @ distances up to 50Mpc

	Max res (arcsec)	Scale (pc)			
		@10 Mpc	@20 Mpc	@50 Mpc	
700 MHz	0.7	34	68	169.7	
1.4 GHz	0.4	19.4	38.8	97	
6.7 GHz	0.08	3.9	7.8	19.4	
12.3 GHz	0.04	2	4	9.7	

Far from the dream! But > enough to identify and resolve GMC

74 galaxies (< 30 Mpc) @ resolution < 100 pc

ALMA large program Pis: Schinnerer, Blanc, Hughes, Leroy, Rosolowsky, Schruba

https://almascience.eso.org/alma-data/lp/PHANGS/

Credit: ALMA (ESO/NAOJ/NRAO)/PHANGS, S. Dagnello (NRAO)

Conclusions

- SKA-1 will provide the sensitivity and resolution to observe in few hours at different frequencies nearby galaxies, identifying and resolving GMC, up to 50 Mpc
- ~ 226 galaxies < 50 Mpc spanning ranges of masses, type, morphology
- Complementary multifrequency data
- ngvla will complement observing the northern sky targets