RadioLensfit: an HPC Tool for Accurate Galaxy Shape Measurement with SKA

Marzia Rivi IRA-INAF

5 October 2021 The Third National Workshop on the SKA project

Galaxy Shapes for Weak Lensing

The measure of gravitational lensing is a powerful technique for estimating mass distribution of dark matter.

Weak lensing regime (large scales), i.e. $|\gamma| \ll 1$:

For a **large sample** of background SF galaxies, **<e>** can be used as an *estimator* of the weak lensing shear γ assuming sources randomly oriented, i.e. **<e**^s> = 0.

Weak Lensing with SKA

The *Square Kilometre Array* (SKA) will reach **sufficient sensitivity** and **angular resolution** to provide large number density of faint star-forming galaxies.

Experiment	$A_{\rm sky} [{\rm deg}^2]$	$n_{\rm gal} [{\rm arcmin}^{-2}]$
SKA1 DES	$5,000 \\ 5,000$	2.7 12
SKA2 <i>Euclid</i> -like	$30,000 \\ 15,000$	$\frac{10}{30}$

Well-known and deterministic knowledge of the PSF (most instrumental systematic effect)

Unique radio approaches may provide estimate of galaxy's intrinsic orientation allowing mitigation of intrinsic alignments:

- Polarization (Brown & Battye 2011, Whittaker+ 2015)
- HI rotational velocity (Morales 2006, Huff+ 2013)

Radio significant **high-redshift tail** compared with optical correspondent surveys

Harrison+ 2016

Weak Lensing with SKA

Removal of additive experimental systematics by radio-optical cross-correlation

Galaxy Shape Measurement

Non linear imaging procedure introduces non-negligible systematics and highly correlated noise. Essential to work directly with the original data!

complex visibilities ⇒ big data ⇒ **Joint analysis in the two domains** sources not localized

IMAGE DOMAIN

- source detection and classification
- position, flux (and possibly size) measurement
- ellipticity initial guess

VISIBILITY DOMAIN for accurate ellipticity measurement following optical approach: **model fitting** of the surface brightness profile

1. Joint fitting of all sources

- Shapelets invariant under Fourier transform (Chang+ 2002), but <u>already</u> <u>dismissed</u> in the optical domain due to model bias
- Hamiltonian Monte Carlo Markov Chains (Rivi+ 2019), very accurate <u>but</u> <u>very time-consuming</u> even for small datasets
- 2. Single source model fitting
 - RadioLensfit adaptation of *lensfit* method used in optical surveys, (Rivi+ 2016, Rivi & Miller 2018, 2021)

Galaxy shape model

Radio model: defined by the synchrotron radiation from the ISM in the disk

- single component
- exponential brightness profile: $I(r) = I_0 e^{-r/\alpha}$

First confirmation of this assumption from radio-optical shape comparison of the cross-matching sources of the COSMOS field at 3 GHz

optical: HST-ACS radio: VLA

- at 1.4 GHz (PSF FWHM ≈ 1.45 arcsec) almost no correlation (Tunbridge+ 2016) Resolution is too low!
- at 3 GHz (PSF FWHM ≈ 0.75 arcsec) a correlation of position angles is found (Hillier+ 2019)

Optical: good performance in the GREAT Challenges of methods using Se'rsic models, they reduce model bias observed with shapelets.

RadioLensfit: Methodology

- **Source visibilities extraction** (by flux/SNR decreasing order):
 - **sky model** made of round sources to isolate the visibilities of a single source
 - **faceting** to restrict the f.o.v around the source: averaging visibilities within grid cells of size $\Delta_u = 1/\theta$ (wavelength units), θ dependent on source size

Analytical visibilities model:

$$V(u,v,w) = \left(\frac{\lambda_{\text{ref}}}{\lambda}\right)^{\beta} \frac{S_{\lambda_{\text{ref}}} e^{2\pi i \left(ul + vm + w(\sqrt{1-l^2 - m^2} - 1)\right)}}{\left(1 + 4\pi^2 \alpha^2 |\mathbf{A}^{-T}\mathbf{k}|^2\right)^{3/2}}.$$

$$\mathbf{A} = \left(\begin{array}{cc} 1 - e_1 & -e_2 \\ -e_2 & 1 + e_1 \end{array} \right)$$

- **Bayesian marginalization** of the likelihood over position (analytically), flux (semi-analytically) using uniform prior, and size (numerically) with log-normal prior $\Rightarrow L(e_1, e_2)$
- Likelihood sampling: ML + adaptive grid around the maximum point

$$\hat{\mathbf{e}} = \text{mean}, \qquad \sigma_{\hat{\mathbf{e}}}^2 = \sqrt{\det(\mathit{cov})}$$

• **Refinement of the sky model:** replace the ellipticity of the current source with the measured one.

RadioLensfit: Parallelization

Hybrid parallelization: MPI + OpenMP

Radio weak lensing pipeline

RadioLensfit: Faceting tuning

- If not available, estimate source scalelength correlation with source flux: $\alpha = f(S)$. Typically a linear relation between log α_{med} and log *S*
- Facet field of view $\theta = K\alpha$, K constant dependent on the uv coverage

Linear bias model:

$$\tilde{e}_i - e_i = m_i e_i + c_i, \qquad i = 1, 2,$$

SKA1-MID simulation of 1000 single sources with SNR > 20

Rivi & Miller 2021

RadioLensfit: Performance

SKA1-MID simulation at 2.7 gal/armin² density

1000 sources with flux 10 – 200 μJy (SNR > 10) single channel at 1.4 GHz, 240 MHz bandwidth, 8-h observation, 60 s sampling time

Test	bad	shape bias				
		m_1	c_1	m_2	c_2	
RL single	13	0.0322 ± 0.0056	0.0041 ± 0.0015	0.0321 ± 0.0051	0.0062 ± 0.0015	
RL all + sizes	10	0.0402 ± 0.0057	0.0057 ± 0.0016	0.0393 ± 0.0051	0.0001 ± 0.0015	
RL all	14	0.0748 ± 0.0056	-0.0005 ± 0.0015	0.0620 ± 0.0051	0.0067 ± 0.0015	
HMC all	0	0.0296 ± 0.0043	0.0001 ± 0.0010	0.0282 ± 0.0040	-0.0002 ± 0.0010	

RadioLensfit results comparable with joint fitting (HMC) but much faster:

RL on 16-core Intel Xeon E5-2650 at 2.00 GHz: 1h 35 min (Rivi & Miller 2021) HMC on same CPU + 2 NVIDIA Tesla K40 GPUs: ~ 9 weeks (Rivi+ 2019)

RadioLensfit: Scalability

INAF HOTCAT cluster SKA1_MID simulation ~ 10⁷ uv points

Overall **super-linear weak scalability** despite tasks synchronization overhead thanks to the strong scalability of the model fitting

Rivi & Miller 2021

RadioLensfit: Shear bias

ideal case (no neighbourood bias), 10^4 single galaxies shear bias requirements for SKA1: $m < 6.4 \times 10^{-3}$, $c < 8.0 \times 10^{-4}$

Removable by isotropization of the PSF

Calibration is required as in the optical surveys

SuperCLuster Assisted Shear Survey (SuperCLASS)

SuperCLASS: DR1 galaxy shapes

Data Release 1: 0.26 deg²

Only *image-plane* shape measurement (IM3SHAPE) with calibration simulations on a source-by-source basis (SuperCALS method) VLA: 440 SF galaxies (0.47 gal/armin²) with SNR > 7 E-MERLIN: 56 matched sources (≈ 0.06 gal/arcmin²)

size and shape of the beam is dominating the morphology of recovered sources

Simulated SFG of J28 pointing of the VLA DR1 Fiducial sky model 1.00 $e_1, \{m, c, R\} = \{0.57 \pm 0.13, -0.05 \pm 0.03, 0.41\}$ $e_2, \{m, c, R\} = \{0.67 \pm 0.13, -0.05 \pm 0.03, 0.33\}$ 0.750.50 e^{out} 0.25Recovered 0.00-0.25-0.50-0.75-1.00-0.50.00.51.0-1.0Input e^{in}

flux × 100, size × 3

Harrison & the SuperCLASS Collaboration 2020

SuperCLASS: Visibilities vs Image

Simulated SFG of J28 pointing of the VLA DR1, size and flux increased:

 $m_1 = 0.042 \pm 0.002, c_1 = 0.0048 \pm 0.0003$ $m_2 = 0.039 \pm 0.002, c_2 = -0.0045 \pm 0.0003$ $m_1 = 0.08 \pm 0.05, c_1 = -0.03 \pm 0.01$ $m_2 = 0.13 \pm 0.06, c_2 = -0.03 \pm 0.01$

Much tighter correlation between input and recovered ellipticities Bias reduced by almost one order of magnitude!

Conclusions

- SKA will open weak lensing observations to the radio band
- New methods for accurate SFG shape measurements are required
- **Joint analysis** in the image/visibility domains **may be required for SKA**. Image analysis may be used for:
 - sources position and flux (and possibly size)
 - initial guess on shape parameters
 - sources classification (for removal of AGN)
- RadioLensfit features:
 - working in the visibility domain
 - model fitting of a source at a time
 - exploitation of multi-core and multi-node systems
 - results comparable with the joint fitting approach
- **SuperCLASS** precursor WL survey (JVLA + e-MERLIN)
 - superCALS (image domain) vs RadioLensfit (visibility domain) methods
 - RadioLensfit may reduce the shape bias by almost an order of magnitude