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Introduction

Detection of 21cm signal from the Epoch of 
Reionization (EoR) is one of the key science goals 
of current and upcoming radio interferometers

Main challenges:

• Foreground that are ~ 5 orders brighter than 
signal

• Instrumental systematics e.g. frequency-
dependent beam, widefield effects, cable 
reflections

• Other systematics: RFI, ionosphere, etc



Introduction

Ultimate goal is to understand EoR by 
constraining reionization parameters: 
21cmFAST + 21cmMC

In traditional 21cm parameter estimation 
experiments:

• Astrophysics + cosmology are forward
modeled

• Instrument + foregrounds are backward
modeled

Greig & Mesinger (2015)



Introduction

Previous work on propagating, i.e. forward modelling, extra-galactic foregrounds and 
instrumental effects into 21cmMC in Nasirudin et. al (2020)

Publicly-available, plug-in framework, py21cmmc_fg, which include: 
• Extra-galactic (residual) foregrounds (10mJy)
• Baseline sampling (MWA Phase II)
• MWA-based Gaussian beam
• 1000 hour of SKA-like noise



Introduction

Nasirudin et. al (2020)



Introduction

The mock data is fully forward-modelled but the 
Bayesian framework is not because foreground 
power is added to the 21cm power

Results show that unaccounted cross-power 
arising from not properly forward modelling can 
cause bias in the constrain

Gazagnes et. al (2021) verified bias results due 
to foreground residual

Nasirudin et. al (2020)



Goal

• Astrophysics + cosmology

• Galactic + extragalactic foregrounds

• Realistic Beam

• Instrumental effects

Propagate 
forwardBest estimates 

+ uncertainty

Develop a flexible forward modelling framework by updating py21cmmc_fg:



Steps

1. Make a database of beam realizations and empirically sample errors

2. Choose a perturbation basis set acting on our “best guess” for the beam

3. Fit basis set in 2 to the empirical database created in step 1

4. Use the distribution of best fit values (conservatively widened) as a prior

5. Covary astro + cosmo + beam parameters following the prior distribution in 4



Step 1
Make a database of beam 

realizations and empirically 
sample errors



Antenna Layouts

• Regularly-spaced antennas in 35-m 
diameter as ideal

• Broken (i.e. offline) antennas based on 
Joseph et. al (2020) (5%)

• Offset antennas (Normal distribution 
𝜎~ 10 cm)

• Broken and offset antennas

Nasirudin et. al (in prep.)



Beam Realizations

• Use OSKAR: Oxford SKA 
Radio Telescope simulator

• Stokes I polarization

• 150, 170 and 190 MHz

Nasirudin et. al (in prep.)



Step 2
Choose a perturbation 

basis set acting on our best 
guess for the beam



Reduce the dimensionality of dataset via non-linear transformations to a higher dimension

Use SPax, a GPU and CPU-optimized PCA and KPCA code developed by David 
Prelogovic available at https://github.com/dprelogo/SPax

Only model the residual between perturbed and ideal beam, ∆𝐵 = 𝐵()*+ − 𝐵-.+/0

Train KPCA on 7,000 realizations of broken + offset data and reconstruct on remaining 
3,000 realizations

Kernel Principal Component Analysis (KPCA)
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Step 3
Fit basis set in Step 2 to the 
empirical database created 

in Step 1



Consider one example realization (1318) with 7 offline dipoles and 23 offset dipoles
Let’s look at only 1 component

∆B : ∆𝐵 for realization 1318
∆B*

1 :  KPCA reconstruction of ∆B using 1 components
∆B*

1 – ∆B : the difference between the KPCA reconstruction using 1 components and ∆𝐵
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Results of KPCA : Number of Components

Now let’s look at 2 more principal
components

∆B for realization 1318

∆B*
N :  KPCA reconstruction of ∆B 

using N components

∆B*
N – ∆B : the difference between the 

KPCA reconstruction using N
components and ∆B
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Results of KPCA : Number of Components

Nasirudin et. al (in prep.)

Now let’s look at 7 principal 
components

∆B for realization 1318 (left-
uppermost panel)

∆B*
N : KPCA reconstruction of ∆B 

using N components

∆B*
N – ∆B : the difference between the 

KPCA reconstruction using N
components and ∆B



Results of KPCA : Number of Components

How many components to 
include?

We look at the mean square 
error between the reconstructed 
beam and true error to decide

Nasirudin et. al (in prep.)



Results of KPCA : 20 Components

This is the final error reconstruction 
for the same realization using 20 
components for all three frequencies

KPCA can characterize the beam 
error quite well

Nasirudin et. al (in prep.)



Step 4
Use the distribution of best 

fit values as a prior



Distribution of Components

Nasirudin et. al (in prep.)

Include 20 principal components 
based on previous plot

PDFs from 3,000 realizations follow 
the Gaussian distribution

Need to conservatively widen the 
prior



Step 5

Covary astrophysical, 
cosmological, and beam 

parameters following the prior 
distribution



Interferometric Framework

Nasirudin et. al (2020)



Next Steps

Investigate if there is an impact on the parameter constrain

• Incorporate into 21cmMC/py21cmmc_fg framework

• Compare posteriors with and without forward-modelled beam errors

• Possibly use GPU to speed things up



Conclusion

Develop a flexible forward modelling EoR
parameter estimation framework that will 
include:

• Astrophysics and cosmology

• Galactic and extragalactic foregrounds

• Realistic beam perturbation

• Instrumental and other systematics

The framework will be modular: users can 
provide best guess and set of priors

KPCA reconstruction of large database of 
beam simulations provides an empirical basis 
for beam errors 


