Chasing the Cosmic Dawn with LEDA

Marta Spinelli Third SKA National Workshop, 4-8 October 2021

A St Strange Burger

VERSITY of the Eldgenössische Technische Hochschule Züric TERN CAPE Swiss Federal Institute of Technology Zurich

Third SKA National Workshop, 4-8 October 2021

 $21 \mathrm{~cm~signal}$

Mesinger, Greig & Sobacchi (2016)

$$\delta T_b \propto x_{HI} (1+\delta) (1-\frac{T_{\gamma}}{T_s}) \text{ mK}$$

4/22

Maria Berti

Giulio Scelfo

Spinelli, Carucci et al. (2021)

High redshift astrophysics (e.g. Monsalve et al. (2019))

An ongoing experimental effort

partial summary from last year **3rd Global 21cm signal** workshop (**4th upcoming next week**)

- EDGES: Bowman et al (2018) *Nature* new results from Mid-Band and Low-Band3, lst analysis, full Bayesian treatment of calibration
- SARAS3: deployed on lake water (3 papers out, main result under revision)
- LEDA: Bernardi et al. (2016), Price et al. (2018), Spinelli et al. 2021
- **REACH** (Cambridge): Karoo Desert
- MIST (McGill): Chile & Canadian Arctic
- PRIZM (McGill +): Marion Island
- PRATUSH (India), DAPPER (Usa): lunar orbit

Connection to interferometry (and SKA)

- LEDA (OVRO-LWA) has also interferometric data Eastwood et al (2019), Garsden et. al (2021)
- Global signal can drive data taking e.g. AARTFAAC Cosmic Explorer Gehlot et al (2020)
- contributes with early constraints for modeling future SKA data

Fialkov & Barkana (2019)

EDGES result

Bowman et al. (2018)

New physics?

$$\delta T_b \propto \left(1 - \frac{T_{\gamma}}{T_s}\right)$$

T_{γ} higher than expected

- early black holes? Ewall-Wice et al 2018
- connection with ARCADE2 excess (Feng & Holder 2018)? (probably not)

$T_s \sim T_k$ lower than expected

- baryon-dark matter fluid slowest it will ever be
- "mini-charged" dark-matter (Barkana 2018, Munoz & Loeb 2018)

Contamination from polarization?

- contaminant is non smooth and may complicate the signal extraction
- enhanced signal may mitigate the need for exotic physics

Spinelli, Bernardi, Santos (2019)

Global signal observations

$$T(\hat{\boldsymbol{r}}_0,\nu,t) = \frac{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) T_{\rm sky}(\hat{\boldsymbol{r}}',\nu,t) \, d\hat{\boldsymbol{r}}'}{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) \, d\hat{\boldsymbol{r}}'} + T_N(\nu,t)$$

- $\hat{\boldsymbol{r}}_0$: e.g. EDGES location
- Different sky at different LST
- Noise varies with integration time and frequency resolution (400 h, 1 MHz)
- Need a beam model $A(\hat{r}, \nu)$ (chromaticity complicates the analysis)

Global signal observations

$$T(\hat{\boldsymbol{r}}_0,\nu,t) = \frac{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) T_{\text{sky}}(\hat{\boldsymbol{r}}',\nu,t) \, d\hat{\boldsymbol{r}}'}{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) \, d\hat{\boldsymbol{r}}'} + T_N(\nu,t)$$

- $\hat{\boldsymbol{r}}_0$: e.g. EDGES location
- Different sky at different LST
- Noise varies with integration time and frequency resolution (400 h, 1 MHz)
- Need a beam model $A(\hat{r}, \nu)$ (chromaticity complicates the analysis)

Global signal observations

$$T(\hat{\boldsymbol{r}}_{0},\nu,t) = \frac{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) T_{\text{sky}}(\hat{\boldsymbol{r}}',\nu,t) \, d\hat{\boldsymbol{r}}'}{\int_{\Omega} A(\hat{\boldsymbol{r}}',\nu) \, d\hat{\boldsymbol{r}}'} + T_{N}(\nu,t)$$

Extracting the signal

Methods

- Bayesian analysis with simplified modeling e.g. Bernardi et al (2015,2016), Bowman et al (2018)
- Maximally smooth functions e.g. Singh et al (2019)
- Methods more robust to chromaticity and systematics e.g. Anstey et al. (2021),

e.g. Anstey et al. (2021) Tauscher et al. (2020,2021)

LEDA

Large-aperture Experiment to detect the Dark Ages

- outriggers of LWA stations at Owens Valley Radio Observatory
- for this analysis: 254 and 252 E-W orientation (polarization A)
- frequency range: 30-87 MHz
- instrument overview, RFI flagging and calibration: Price et al. (2018)

LEDA observations

- 137 *days*: Dec 2018 to May 2019 (+ May 2018)
- best window: *night-time* (less RFI and ionospheric disturbance) and *avoid galactic plane* (less chromaticity)
- Dec/Jan (dry soil)
- δ lst ~ 15sec, $\delta \nu \sim 24$ kHz, $\nu > 50$ MHz
- final spectra: rebin with δ lst ~ 10min, $\delta \nu = 1$ MHz

Spectral index

$$T_{\text{model}}(\nu) = T_{75}(\frac{\nu}{\nu_{75}})^{\beta} + T_{\text{CMB}}$$

- combined 254A and 252A results
- evolution with LST in agreement with models and available data
- ground screen and soil condition due to weather are important

Work in progress

Improving antenna sims

with Georgios Kyriakou and Pietro Bolli (Arcetri)

Refining data selection and understanding of systematics Goal: set upper limit on the absorption feature

Funding secured to open better site in 2022 (very clean) *PI: Greenhill*

Global (Signal) Conclusions

- 21cm Global signal experiments have the potential to unveil the high redshift Universe
- Need to treat foregrounds (and their coupling with the antenna) properly!
- EDGES measurement has triggered further investigations both theoretically and for the analysis pipeline
- An independent measurement is needed to convince the scientific community

Available data to be used to understand systematics, constraint foregrounds (and the 21cm signal) in preparation for SKA