

SKAO HI Intensity Mapping: Blind Foreground Subtraction Challenge

Isabella Paola Carucci

Università degli Studi di Torino

T [mK]

The Third National Workshop on the SKA Project The Italian Route to the SKAO Revolution 5th October 2021

SKAO HI Intensity Mapping: Blind Foreground Subtraction Challenge

Isabella Paola Carucci

Università degli Studi di Torino

The Third National Workshop on the SKA Project The Italian Route to the SKAO Revolution 5th October 2021

A collective effort of (a subset of) the IM Focus Group, within the SKA Cosmology SWG

SKAO HI Intensity Mapping: Blind Foreground Subtraction Challenge

Marta Spinelli,^{1,2,3} Isabella P. Carucci,^{4,5,6} Steven Cunnington,⁷ Stuart E. Harper,⁸ Melis O. Irfan,^{3,7} José Fonseca,^{7,3,9,10} Alkistis Pourtsidou,^{7,3} Laura Wolz⁸

ABSTRACT

Neutral Hydrogen Intensity Mapping (HI IM) surveys will be a powerful new probe of cosmology. However, strong astrophysical foregrounds contaminate the signal and their coupling with instrumental systematics further increases the data cleaning complexity. In this work, we simulate a realistic single-dish H_I IM survey of a 5000 deg² patch in the 950 – 1400 MHz range, with both the MID telescope of the SKA Observatory (SKAO) and MeerKAT, its precursor. We include a state-of-the-art HI simulations and explore different foreground models and instrumental effects such as non-homogeneous thermal noise and beam side-lobes. We perform the first Blind Foreground Subtraction Challenge for HI IM on these synthetic data-cubes, aiming to characterise the performance of available foreground cleaning methods with no prior knowledge of the sky components and noise level. Nine foreground cleaning pipelines joined the Challenge, based on statistical source separation algorithms, blind polynomial fitting, and an astrophysical-informed parametric fit to foregrounds. We devise metrics to compare the pipeline performances quantitatively. In general, they can recover the input maps' 2-point statistics within 20 per cent in the range of scales least affected by the telescope beam. However, spurious artefacts appear in the cleaned maps due to interactions between the foreground structure and the beam side-lobes. We conclude that it is fundamental to develop accurate beam deconvolution algorithms and test data post-processing steps carefully before cleaning. This study was performed as part of SKAO preparatory work by the HI IM Focus Group of the SKA Cosmology Science Working Group.

arXiv: 2107.1081

A collective effort of (a subset of) the IM Focus Group, within the SKA Cosmology SWG

SKAO HI Intensity Mapping: Blind Foreground Subtraction Challenge

Marta Spinelli, ^{1,2,3}* Isabella P. Carucci,^{4,5,6}[†] Steven Cunnington,⁷ Stuart E. Harper,⁸ Melis O. Irfan,^{3,7} José Fonseca,^{7,3,9,10} Alkistis Pourtsidou,^{7,3} Laura Wolz⁸

ABSTRACT

Neutral Hydrogen Intensity Mapping (HI IM) surveys will be a powerful new probe of cosmology. However, strong astrophysical foregrounds contaminate the signal and their coupling with instrumental systematics further increases the data cleaning complexity. In this work, we simulate a realistic single-dish HI IM survey of a 5000 deg² patch in the 950 – 1400 MHz range, with both the MID telescope of the SKA Observatory (SKAO) and MeerKAT, its precursor. We include a state-of-the-art HI simulations and explore different foreground models and instrumental effects such as non-homogeneous thermal noise and beam side-lobes. We perform the first Blind Foreground Subtraction Challenge for HI IM on these synthetic data-cubes, aiming to characterise the performance of available foreground cleaning methods with no prior knowledge of the sky components and noise level. Nine foreground cleaning pipelines joined the Challenge, based on statistical source separation algorithms, blind polynomial fitting, and an astrophysical-informed parametric fit to foregrounds. We devise metrics to compare the pipeline performances quantitatively. In general, they can recover the input maps' 2-point statistics within 20 per cent in the range of scales least affected by the telescope beam. However, spurious artefacts appear in the cleaned maps due to interactions between the foreground structure and the beam side-lobes. We conclude that it is fundamental to develop accurate beam deconvolution algorithms and test data post-processing steps carefully before cleaning. This study was performed as part of SKAO preparatory work by the HI IM Focus Group of the SKA Cosmology Science Working Group.

arXiv: 2107.1081

- (Matteo's talk)
- Contaminants are **THE** problem
 - How to simulate them?
 - How to subtract them?
- The blind challenge
- MeerKLASS as testbed

• HI IM: an innovative cosmological probe

(me, Marta Spinelli, Gianni Bernardi, Stefano Camera)

MeerkAT

HI IM with MeerKAT: MeerKLASS
calibration paper —> Wang+ 2021
Analysis of the Science Verification Data in progress

64+ dishes with single pixel feeds

MeerkAT

HI IM with MeerKAT: MeerKLASS
calibration paper —> Wang+ 2021
Analysis of the Science Verification Data in progress

64+ dishes with single pixel feeds

Neerkal

- - ٠
 - Fix Alt ~ 45deg ٠
 - L-band (856-1712MHz) ٠
 - Overlap with WiggleZ/SDSS ٠
 - Test system, training pipeline •

 HI IM with MeerKAT: MeerKLASS calibration paper —> Wang+ 2021 Analysis of the Science Verification Data in progress

MeerKAT Large Area Synoptic Survey (MeerKLASS, PI: Mario Santos)

~170 square deg, ~10 hours, ~60 dishes

J. Wang et. al. arXiv:2011 13789

Credit: Yichao Li

Contaminants are THE problem

HI intensity mapping: state-of-the-art

Chang+ 2010

Green Bank Telescope X WiggleZ galaxies z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

2.

Anderson+ 2018

Parkes telescope X 2dF optical galaxies

HI intensity mapping: state-of-the-art

Chang+ 2010

Green Bank Telescope X WiggleZ galaxies z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

2.

Anderson+ 2018

Parkes telescope X 2dF optical galaxies

HI intensity mapping: buried under the foregrounds

HI intensity mapping: buried under the foregrounds

The separation of a set of source signals (contaminants) from a set of mixed signals (the maps), with little or no info about the source signal or the mixing process.

SS.

The separation of a set of source signals (contaminants) from a set of mixed signals (the maps), with little or no info about the source signal or the mixing process.

The separation of a set of source signals (contaminants) from a set of mixed signals (the maps), with little or no info about the source signal or the mixing process.

- **Decorrelation** -> diagonalise the covariance matrix
- Independence —>

as more independent sources are mixed the signal becomes more Gaussian (central limit theorem). So, let's maximise the nongaussianity of the sources to unmix them.

Principal Component Analysis (**PCA**)

Independent Component Analysis (ICA)

The separation of a set of source signals (contaminants) from a set of mixed signals (the maps), with little or no info about the source signal or the mixing process.

- **Decorrelation** -> diagonalise the covariance matrix
- Independence —>

as more independent sources are mixed the signal becomes more Gaussian (central limit theorem). So, let's maximise the nongaussianity of the sources to unmix them.

Principal Component Analysis (**PCA**)

Independent Component Analysis (ICA)

The separation of a set of source signals (contaminants) from a set of mixed signals (the maps), with little or no info about the source signal or the mixing process.

Chang+ 2010

1.

Green Bank Telescope X WiggleZ galaxies z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

2. Anderson+ 2018 Parkes telescope X 2dF optical galaxies

Chang+ 2010 1.

Polynomial fitting

Green Bank Telescope X WiggleZ galaxies z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

2. Anderson+ 2018 Parkes telescope X 2dF optical galaxies

Chang+ 2010

Polynomial fitting

Green Bank Telescope X WiggleZ galaxies Z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

2. Anderson+ 2018 Parkes telescope X 2dF optical galaxies

"Instrumental effects such as passband calibration and **polarization leakage** couple bright foregrounds into new degrees of freedom [...]. The spectral functions describing these systematics cannot all be modelled in advance, so we take an **empirical approach to** foreground removal by estimating dominant modes from the covariance of the map itself." Switzer+ 2013

Chang+ 2010

Polynomial fitting

Green Bank Telescope X WiggleZ galaxies Z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

2. Anderson+ 2018

Parkes telescope X 2dF optical galaxies

> Principal Component Analysis (**PCA**)

"Instrumental effects such as passband calibration and **polarization leakage** couple bright foregrounds into new degrees of freedom [...]. The spectral functions describing these systematics cannot all be modelled in advance, so we take an **empirical approach to** foreground removal by estimating dominant modes from the covariance of the map itself." Switzer+ 2013

Chang+ 2010

Polynomial fitting

Green Bank Telescope X WiggleZ galaxies Z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

Independent Component Analysis (ICA)

2. Anderson+ 2018

Parkes telescope X 2dF optical galaxies

> Principal Component Analysis (PCA)

"Instrumental effects such as passband calibration and **polarization leakage** couple bright foregrounds into new degrees of freedom [...]. The spectral functions describing these systematics cannot all be modelled in advance, so we take an **empirical approach to** foreground removal by estimating **dominant modes** from the covariance of the map itself." Switzer+ 2013

Chang+ 2010

Polynomial fitting

Green Bank Telescope X WiggleZ galaxies Z~0.8

(also Masui+ 2013, Wolz+ 2017,2021)

Independent Component Analysis (ICA)

2. Anderson+ 2018

Parkes telescope X 2dF optical galaxies

> Principal Component Analysis (**PCA**)

"Instrumental effects such as passband calibration and **polarization leakage** couple bright foregrounds into new degrees of freedom [...]. The spectral functions describing these systematics cannot all be modelled in advance, so we take an **empirical approach to** foreground removal by estimating **dominant modes** from the covariance of the map itself." Switzer+ 2013

- In all theoretical works:
- no noteworthy difference between PCA or ICA
- ~4 components removed are enough

Polynomial fitting Chang+ 2010 Green Bank Telescope X WiggleZ galaxies Z~0.8 (also Masui+ 2013, Wolz+ 2017,2021) 10 - 20

Independent Component Analysis (ICA)

2. Anderson+ 2018

Parkes telescope X 2dF optical galaxies

> Principal Component Analysis (**PCA**)

"Instrumental effects such as passband calibration and **polarization leakage** couple bright foregrounds into new degrees of freedom [...]. The spectral functions describing these systematics cannot all be modelled in advance, so we take an **empirical approach to** foreground removal by estimating **dominant modes** from the covariance of the map itself." Switzer+ 2013

- In all theoretical works:
- no noteworthy difference between PCA or ICA
- ~4 components removed are enough

Polynomial fitting Chang+ 2010 Green Bank Telescope X WiggleZ galaxies Z~0.8 (also Masui+ 2013, Wolz+ 2017,2021) Independent 10 - 20 Component Analysis (ICA)

2. Anderson+ 2018 10

Parkes telescope X 2dF optical galaxies

> Principal Component Analysis (**PCA**)

"Instrumental effects such as passband calibration and **polarization leakage** couple bright foregrounds into new degrees of freedom [...]. The spectral functions describing these systematics cannot all be modelled in advance, so we take an **empirical approach to** foreground removal by estimating **dominant modes** from the covariance of the map itself." Switzer+ 2013

- In all theoretical works:
- no noteworthy difference between PCA or ICA
- ~4 components removed are enough

"Instrumental effects such as passband calibration and **polarization leakage** couple bright foregrounds into new degrees of freedom [...]. The spectral functions describing these systematics cannot all be modelled in advance, so we take an **empirical approach to** foreground removal by estimating **dominant modes** from the covariance of the map itself." Switzer+ 2013

- In all theoretical works:
- no noteworthy difference between PCA or ICA
- ~4 components removed are enough

We need:

1. simulations as realistic as possible

We need:

simulations as realistic as 1. possible

Harper+ 2018, Spinelli+ 2020, Matshawule+ 2021

We need:

simulations as realistic as 1. possible

2. new BSS algorithms optimised for HI IM

Harper+ 2018, Spinelli+ 2020, Matshawule+ 2021

We need:

simulations as realistic as 1. possible

2. new BSS algorithms optimised for HI IM

Harper+ 2018, Spinelli+ 2020, Matshawule+ 2021

GMCA (sparsity-based) —> mixGMCA (Carucci+ 2020, Cunnington+ 2021, The SKAO Blind Challenge, work in progress...)

a quick interlude on GMCA

The separation of a set of source signals (contaminants) from a set of mixed signals (the maps), with little or no info about the source signal or the mixing process.

- **Decorrelation** –>
 - Independence —>
- Sparsity –>

 \bullet

why sparsity? mixtures are less sparse than sources

why sparsity? mixtures are less sparse than sources

5th October 2021
why sparsity? mixtures are less sparse than sources

5th October 2021

why sparsity? mixtures are less sparse than sources

5th October 2021

Enforcing sparsity: in which domain?

5th October 2021

Enforcing sparsity: in which domain?

5th October 2021

Enforcing sparsity: in which domain?

5th October 2021

Sparsity-based component-separation for 21-cm IM

GMCA: Generalised Morphological Component Analysis

Bobin+ 2007, 2008, 2012,... Applied on data in different astro-context: CMB (e.g. Bobin+2016), EoR (e.g. Hothi+2020), X-ray (Picquenot+2019), ...

- wavelet decomposition —> multi-scale approach
- No priors on signal

in Carucci+ 2020, for the fist time in the literature:

- Good performance also with
- **RFI-flagged** data cubes!
 - (TV stations, telecommunication, satellites,..)
- **Pol leakage:** greater complexity of data (higher number of sources needed, convergence not assured, mode-mixing assured)

Different scales need different care

See also Hothi+2020 with LOFAR data

Different scales need different care

See also Hothi+2020 with LOFAR data

- GMCA performs very well on small scales, can fail at the large scale
- PCA / ICA -> overfit the large scales

Different scales need different care The wavelet domain is a multi-scale framework!

See also Hothi+2020 with LOFAR data

- GMCA performs very well on small scales, can fail at the large scale
- PCA / ICA -> overfit the large scales

PCA on the large scale + GMCA on the small scales

Different scales need different care The wavelet domain is a multi-scale framework!

See also Hothi+2020 with LOFAR data

- GMCA performs very well on small scales, can fail at the large scale
- PCA / ICA -> overfit the large scales

PCA on the large scale + GMCA on the small scales mixGMCA

HI intensity mapping: how to subtract the contaminants?

We need:

simulations as realistic as 1. possible

2. new BSS algorithms optimised for HI IM

3. to test the BSS pipelines on the same set of sims

HI intensity mapping: how to subtract the contaminants?

We need:

simulations as realistic as 1. possible

2. new BSS algorithms optimised for HI IM

3. to test the BSS pipelines on the same set of sims

Harper+ 2018, Spinelli+ 2020, Matshawule+ 2021

GMCA (sparsity-based) —> mixGMCA (Carucci+ 2020, Cunnington+ 2021, The SKAO Blind Challenge, work in progress...)

Started at the 2020 SKA Cosmology SWG meeting, as a collective project of the IM Focus Group

First Blind Foreground Subtraction Challenge

if we were given SKA-mid IM data today, what could we achieve in terms of contaminants subtraction?

Sky components:

- 1. HI
- 2. Astrophysical Foregrounds
 - Galactic synchrotron
 - Galactic Free-Free
 - Extragalactic background
 - Point Sources

HI-Probe Populator (HIP-POP)

How to get big volumes for large-scale studies? Combining SAMs and fast halo catalogues (LPT: e.g. Pinocchio, Monaco et al. (2002))

Slide: Marta Spinelli

Slide: Marta Spinelli

Scanning strategy (non-uniform noise)

2 FGs models x 2 Beam Models = 16 data cubes to clean x 2 Instruments x 2 Deconvolution strategies

Scanning strategy (non-uniform noise)

x 512 channels

Pipelines that joined the Blind Challenge

Method	Assumption on foreground components	Pipeline	Description
Principal Component Analysis	Statistically uncorrelated	PCA(a) PCA(b) PCAwls	As in Cunnington et al. (2021b) <i>fg_rm</i> code (Alonso et al. 2015), with rms weitghing PCA applied on the wavelet-transformed data
Independent Component Analysis	Non-Gaussian	FASTICA(a) FASTICA(b)	Based on Scikit-learn package <i>fg_rm</i> code (Alonso et al. 2015)
Generalised Morphological Component Analysis	Sparse in a given domain and morphologically diverse	GMCA mixGMCA	As in Carucci et al. (2020) PCA on the coarse scale + GMCA on small scales
Polynomial Fitting	Smooth in frequency	poLOG	In log-log space (Alonso et al. 2015, fg_rm code)
Parametric Fitting	Assumptions on spectral indices	LSQ	Fit to individual foregrounds

9 pipelines on 16 data cubes

Comparison at the map level: angular and radial power spectra

Comparison at the map level: angular and radial power spectra

Results: radial power spectra

Results: radial power spectra

The peak feature in the recovered radial PS due to the interaction between the beam and the foregrounds

Results: compressed in radar charts, example

peak k_{\min}

5th October 2021

Results: compressed in radar charts, example

Results

 $\Delta \ell_{
m max}$

 rms_{Pk}

slos

peak

 k_{\min}

 $\Delta \ell_{
m max}$

 rms_{Pk}

peak

 k_{\min}

slos

slos

peak

 k_{\min}

 $\Delta \ell_{
m max}$

 rms_{Pk}

5th October 2021

Summary

- The Blind Challenge is an excellent **exercise**, both for the *simulations* and for the *methods*. It should be used also as a way to devise/ design optimal cleaning pipelines
- Beam + spatially structured FGs —> nontrivial artefacts in the maps. We need better deconvolution strategy
- Blind methods (i.e. based on statistical properties of data) should be preferred
- Small differences in the implementation —> quite different results. We opened a pandora box of things to be checked/ investigated
- **MeerKLASS** ongoing!

HI intensity mapping with the SKAO

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts

Summary

- The Blind Challenge is an excellent **exercise**, both for the *simulations* and for the *methods*. It should be used also as a way to devise/ design optimal cleaning pipelines
- Beam + spatially structured FGs —> nontrivial artefacts in the maps. We need better deconvolution strategy
- Blind methods (i.e. based on statistical properties of data) should be preferred
- Small differences in the implementation ---> quite different results. We opened a pandora box of things to be checked/ investigated
- MeerKLASS ongoing!

5th October 2021

Isabella P. Carucci