

ITALIAN DEVELOPMENT FOR SKA-Low

Jader Monari, Giulia Macario

jader.monari@inaf.it, giulia.macario@inaf.it

SQUAREKILOMETREARRAY

- Huge science project: 100 organizations in 20 countries
- Biggest radio interferometer: km-square collecting area, thousands km extension
- Built in remote deserts (radio-quiet/good atmospheric conditions)

History of INAF participation to SKA

				FAA CDR SCDR	PRR		
Dawn project	BEST era	Middle age	e Renais sance				
2002 irst SKA neeting UE –	2005–2009 SKADS	2010-2015 AAVP	2015-2018 AADC-RT	2018-2022 Bridging phases Pre-procurement	2018-2022 Bridging phases 1-2-3 Pre-procurement	2023-2028 AA0.5-AA3*	
FP6- SKADS	DEV CETTURE DEV CETTURE DEV CETTURE DEV CETTURE						

SKA1-Low configuration

Field station

- o 256 antennas
- o Circular area
- o 38 m (effective station diameter)
- o Ground plane
- o 256 antennas randomly distributed

SKA1-Low architecture: station beamformer

Receiver chain: technology made in Italy

SKALA4.1AL Antenna

- Dual-polarized LPDA.
- 20 dipoles: 19 triangular-tooth plus 1 bow-tie at the bottom of the antenna.
- Solid dipoles on the high-frequency elements and wire dipoles on the low-frequency ones.
- 1-degree tilted boom.
- Aluminium-made.
- Electrical connection of the antenna to the ground plane.
- Antenna matched to a single-ended 50-ohm LNA.
- LNA encapsulated in the top-cap of the antenna and connected to a coaxial cable embedded in the antenna booms.

Analogue RFoF link

Tile Processing Module

- Convert analogue optical to electrical signals
- Amplify and bandpass filter ready for digitisation;
- Digitise at 800MS/s and pass to digital processing;
- Manage the clock distribution and the memory storage;
- Digitally process;
- Packetize Data for 100 Gbit/sec data processing;
- Control and monitoring functionality

Firmware

- LFAA firmware used in the iTPM board to
 - Channelize, calibrate and align antenna signals
 - Combine 256 antennas in up to 48 beams
 - Format and transmit beamformed signals to correlator
 - Format and transmit selected signals to calibration server
- Prototype firmware used in AAVS array
- Significant work required for industrial grade final system
- People: 3 persons (1 FTE) INAF, 4 persons (3 FTE) UK

Software

- Low level control software
 - Hardware drivers: developed together with firmware blocks
 - General standalone software, used at AAVS array
 - Control of cabinet and subrack electronics (power management, temperature, cooling)
- Integration of hardware in SKA Low LMC
 - Device software in the Tango Control environment
 - Hardware related problems: antenna pointing, beam management, observation management, calibration strategies
 - Interface with other systems (correlator, telescope manager)
 - Network design and management (SKA as a network defined instrument)

UAV

Australian Outback

Murchison Radio Observatory

MWA: Murchison Widefield Array

AAVS1: Aperture Array Verification System1

EDA2 and AAVS2

2 demonstrators built at MRO site to verify SKA1-low system before construction

EDA2 (2019) 256 MWA dipoles LNA modified for 50-350 MHz 35 m diameter

AAVS2 (end of 2019) 256 SKALA 4.1 log-periodic LNA optimized for full 50-350 MHz 38 m diameter

Aerial view of EDA2 and AAVS2 - Credits: Icrar/Curtin

INAF Observation WG: First results and future work

OAArcetri - G. Macario, P. Bolli, P. Di Ninni, G. Comoretto

IRA - G. Bernardi, G. Pupillo, F. Perini, A. Mattana, J. Monari

support to/validation of AAVS2 commissioning observations

INAF Observation WG: First results and future work

OAArcetri - G. Macario, P. Bolli, P. Di Ninni, G. Comoretto

IRA - G. Bernardi, G. Pupillo, F. Perini, A. Mattana, J. Monari

support to/validation of AAVS2 commissioning observations

"Golden datasets" of parallel AAVS2/EDA2 acquisitions:

- > 50, 70, 110, (137), 160, 230, 320 MHz (based on UAV)
- started in 12/2019, stable since 02/2019
- snapshots every 5 minutes, across ~24-48 hours LST (t_{int}=0.14s, ~1 MHz BW, main purpose: sensitivity)

AAVS2 single snapshot uv-coverage at 110 MHz (Sun transit)

1. Sun-based calibration and all-sky imaging

Macario, Pupillo, Bernardi et al. 2021 (<u>Astro-ph</u>)

1. Sun-based calibration and all-sky imaging

Macario, Pupillo, Bernardi et al. 2021 (Astro-ph)

2. SKA1-Low zenith sensitivity

- averaged sensitivities (between the XX and YY pol. and in LST 0-8h)
- good agreement with simulation, (≤13%)
- meet SKA1-Low requirements at all frequencies (up to ~2.3 above) - LST averaging dependent

Macario, Pupillo, Bernardi et al. 2021 (Astro-ph)

3. Calibration solutions stability

AAVS2 110 MHz - Global Sky Model + Sun calibration solutions

Credits: Ravi Subrahmanyan (RRI)

3. Polarization performances

160 MHz IXR map (observed)

160 MHz IXR map (simulated)

more details in this presentation

Conclusions and future work

- **AAVS2** is **calibratable** (at least to first order) **and** fairly **stable** (over at least 24 hours)
- estimated SKA1-Low sensitivities agree with simulations and meet requirements

Conclusions and future work

- **AAVS2** is **calibratable** (at least to first order) **and** fairly **stable** (over at least 24 hours)
- estimated SKA1-Low sensitivities agree with simulations and meet requirements

To be started / long term goals

- $\star \quad \text{Extended RS flux densities analysis} \rightarrow \textit{report}$
- ★ Estimate of ionospheric effects through data/images → *publication*
- ★ Calibratability (especially at low frequencies): sky models and/or other RS in the field \rightarrow *publication*

Future plans (proposals)

- ★ Science/astronomy with AAVS2, i.e.:
 - building an all-sky model
 - study of Galactic emission (GC/ GP/diffuse structures) at low resolution
- ★ AAVS2 + MWA or EDA2 for higher resolution, science \rightarrow feasibility in light of AA0.5 (6 stations)
- ★ Evaluation of commissioning science feasible with AA0.5