

LeMMINGs the e-MERLIN radio legacy survey of nearby galaxies

ACCRETION AND EJECTION

- AGN are accreting super-massive black holes at the centers of galaxies
- BHs (and galaxies) can be active or inactive if (detected) evidence of accretion or ejection (problem of low-luminosity AGN)
- High-resolution maps in the radio can provide direct views of black-hole accretion even in dusty environments, and can detect AGN at accretion rates below those detectable in other wave-bands.
- Our view of the nuclear activity in the Universe is biased towards massive, bright and unobscured galaxies, which leads to a partial understanding of the BH accretion and ejection

Necessity to go to low luminosities..

A CENSUS OF NUCLEAR ACTIVITY IN THE LOCAL UNIVERSE

Why care about low-luminosity AGN (LLAGN)?

- They are common, numerous and representative of BH accretion
- similar to quiescent galaxies, allowing the study of nuclear triggering mechanisms
- Higher AGN-galaxy contrast, to study host-BH connection
- smaller BH masses: BH mass function!
- Constraint the low end of the luminosity function

why a census? BH occupation fraction at low BH mass and RLF to constrain scaling relations and the cosmological evolutionary models for SMBHs.

JVLA RL function at 15 GHz

The LeMMINGs survey: Legacy e-MERLIN Multi-band Imaging of Nearby Galaxies

- Pl: I. McHardy & R. Beswick. Aims:
 - Studying LLAGN at the low end of the radio luminosity function
 - Star formation AGN disentagling
- Observations at 1.5 and 5 GHz (L and C band)
 - Reaching angular resolutions of 150 mas and 50 mas respectively
 - Reaching sensitivities of 50-80 uJy/beam
- Two tiers: deep and shallow:
 - Shallow tier: L band maps published in Baldi et al (2018, 2021) a e interpreted in Baldi et al. (2021b).
 - Deep tier: scientifically interested targets (M82, IC10, NGC4151, M51b, NGC6217, NGC5322)

http://lemmingslegacy.pbworks.com/w/page/145646928/FrontPage

Southampton

MAN

1874

The University of Manchester

The LeMMINGs sample

- Shallow' = Palomar bright galaxy sample
- Best selected sample of nearby galaxies (Ho et al. 1995)
- Optically selected, B_T < 12.5 mag, no radio bias
- All galaxy types: Active (Seyfert, LINER), Non-active HII galaxies, Absorption line galaxies)
- All 280 galaxies above Dec +20 [median distance 20 Mpc]
- Strong multi-wavelength coverage
 - Complete HST, Spitzer and (mostly) Herschel imaging
 - Almost complete Chandra imaging (Large Program approved)
 - Complete JVLA imaging

e-MERLIN: a SKA pathfinder

- A UK based radio array made up of 7 antennas, spread across England (max baseline of 220 km)
- High resolution (0.1-0.04 arcsec) and sensitivity (10uJy/beam in 12 hours) in broad frequency bands centres at 1.5, 5 and 22 GHz

OBSERVATIONS

- Total project allocation is 810hrs
 - Palomar shallow tier → 280 galaxies (on-source time ~48min/band/source); 750 hours total; no Lovell
 - Median distance = 20Mpc
 - Deep tier → 6 Targets observed (sub-set of shallow tier)
 ~5hrs/band/source; 60 hours total; Lovell

	Number of targets	Sensitivity µJy/bm	Luminosity (at median D)	Approx. On- source time
Shallow (L-band) res ~120mas	280	~80	1.8 * 10 ¹⁸ W/Hz	48min
Shallow (C-band) Res ~ 35mas	280	~60	7.2 * 10 ¹⁷ W/Hz	48min

L-BAND: RESULTS

Triple source Single core Double jet NGC5353 NGC4051 NGC2681 40 17 00.0 31 54.0 0 Full resolution 53.5 53.0 C ()Do Ø¥ ۲ 52.5 \bigcirc 49.0 5 52.0 D O. 51.5 12 03 09.75 09.55 09.50 09.70 09.65 09.60 13 53 26.75 26.70 26.65 Right Ascension (J2000) 26.60 08 53 32.80 32.75 32.70 32.65 32.60 0 31 54.0 LOW resolution 50.0 53.5 53.0 49.5 \odot 200pc 70pc 52.5 0 49.0 50oc 52.0 51.5 12 03 09.75 09.55 09.65 09.60 13 53 26.75 26.60 26.70 26.65 32.75 32.70 32.65 Right Ascension (J2000) 08 53 32.80 32.60 Right Ascension (J2000)

<mark>Baldi et al. 2018, 2021a</mark>

Radio Results from the full sample

- ~45%. of sources detected
- 58/94 LINERs; 13/18 Seyferts; 47/140 HII galaxies; 7/28 ALGs
- ~38% detection/identification of radio core
- Radio jets on scales of 3-6600 pc

		optical class				
	radio class	LINER	ALG	Seyfert	HII	Tot
pə	core/core-jet (A)	37	3	6	18	64
tiff	one-sided jet (B)	2	0	1	2	5
ent	triple (C)	13	2	3	4	22
id	doubled-lobed (D)	3	0	1	0	4
ore	jet+complex (E)	1	0	1	9	11
0	Tot core-identified	56	5	12	33	106
	unidentified	2	$\overline{2}$	1	14	19
29	Tot detected	58	7	13	47	125
	undetected	36	21	5	93	155
	Tot	94	28	18	140	280

RESULTS

- $L_{core} \sim 10^{34} 10^{40} \text{ erg s}^{-1}$ (10^{17.6} - 10²² W Hz⁻¹)
- within a factor 100 of Sgr
 A* (in L band), but aim at
 reaching radio luminosity
 function within a factor of
 10 in C band.
- LINERs are the brightest and most luminous
- jetted sources in HII galaxies and in BH with M_{BH}>10⁶ M_☉

DIAGNOSTICS TO EXPLORE THE ORIGIN OF THE RADIO EMISSION $L_{CORE} - M_{BH}$ and $L_{CORE} - L_{[OIII]}$ Baldi et al 2021b

ORIGIN OF RADIO EMISSION IN NEARBY GALAXIES

- RQ and RL LINERs show core-brightened radio morphologies, are powered by radiafively inefficient discs (RIAF, with low m) launghing sub-relativistic and relativistic jets, respectively
- Low-power slow jets and disc/corona winds from moderately high to high-m discs (standard disc, SAD) account for the compact and edge-brightened jets of Seyferts, respectively
- Fuel-starved BHs and recurrent activity could account the properties of ALG, which are typically found in evolved ellipticals.
- Jetted HII galaxies may host weakly active BHs

 HII galaxies are powered by nuclear SF. 	class	radio	ṁ	disc
Standard disc (clim disc)	RL LINER	relativistic jets	$\lesssim 10^{-3}$	RIAF
Standard disc (Sinn disc) Compact corona	RQ LINER	sub-relativistic jets	$\lesssim 10^{-3}$	truncated thick disc
Accretion Disc	(DO) Sourfort	sub-relativistic jets	$\lesssim 10^{-2}$	JED/truncated slim disc
	(RQ) Seylett	disc/corona wind	$\gtrsim 10^{-2}$	SAD
	ALG	(sub-)relativistic jets	$\lesssim 10^{-3}$	recurrent/starving RIAF
RIAF Hot flow (RIAF) Truncated Disc	jetted H II	sub-relativistic jets and SF	$\lesssim 10^{-3}$	RIAF?
	non-jetted H II	SF		
		•		

CHANDRA X-RAY

- flux limit: 3 x 10⁻¹⁵ erg s⁻¹ cm⁻²
- I 50/280 (~70%) of the sample detected in 2-1
- Photometry and 2-10 keV spectroscopy (area

		optical	class
X-ray	LINER	ALG	Seyfe
detected	68	13	13
undetected	9	9	1
unobserved	16	6	4
Tot	93	28	18
	~88%.	~59%	~93%
Williams, Bal	di et al. in р	rep.	/0/

C-BAND OBSERVATION

- All 280 observations calibrated and imaged at 5 GHz
- Resolution 40-50 mas and sensitivity 59 μJy/beam

5-GHz Radio LF (in prep)> 10¹⁷ W Hz⁻¹

SUMMARY AND CONCLUSIONS

- LeMMINGs 1.5 GHz is complete:
 - The deepest high-resolution survey of local galaxies (~10¹⁷⁻¹⁸ W Hz⁻¹)
 - the presence of a break at M_{BH} ~ 10^{6.5} M_☉ moving from the SF to AGN regime with increasing BH mass: separating SF galaxies and LLAGN in the local Universe
 - Different disc-jet couplings have been discussed to interpret the radio-[OIII](-X-ray) result:
 - Seyferts, higher m accretors than LINERs, mostly produce edge-brightened radio structures
 - Radio-loud LINERs are lower-luminosity counterparts of FRI galaxies
 - Most HII galaxies show no radio core detection, but some have radio jets: a clear sign of AGN activity
 - Absorption Line Galaxies are probably powered by an AGN, but more work needed
 - Specific accretionn-ejection state of active BHs (together with other factors, e.g. BH spin, magnetic field, gas supply, disc spin,..) determine the radio-optical connection in active/inactive galaxies
- LeMMINGs C band is underway soon!
- Plenty of multi-wavelength follow up still to do (full HST and Chandra, JVLA, LOFAR, Spitzer, Herschel)

