MARCO PADOVANI **SPECTRAL INDEX OF SYNCHROTRON EMISSION: INSIGHTS FROM THE DIFFUSE** AND MAGNETISED INTERSTELLAR MEDIUM M. Padovani, A. Bracco, V. Jelić, D. Galli & E. Bellomi, A&A 651, A116 (2021)

OSSERVATORIO ASTROFISICO DI ARCETRI

OUTLINE WHY STUDY THE GALACTIC SYNCHROTRON EMISSION (GSE)? FUNDAMENTALS OF SYNCHROTRON EMISSION UPDATES ON THE GALACTIC COSMIC-RAY ELECTRON FLUX A CAREFUL MODELLING OF GSE • A METHOD TO ESTIMATE B_{\perp}

FOREGROUND CONTAMINANTS

It is therefore of great importance to obtain a detailed understanding of the spectral and spatial variations of GSE in order to mitigate their effects on cosmological observations.

FUNDAMENTALS OF SYNCHROTRON EMISSION $e_{1} \rightarrow$ \rightarrow

specific emissivity

specific intensity (brightness)

$$\epsilon_{\nu}(\mathbf{r}) = \int_{m_e c^2}^{\infty} \frac{j_e(E, \mathbf{r})}{\nu_e(E)} P_{\nu}^{\text{em}}(E, \mathbf{r}) \, \mathrm{d}E \qquad P_{\nu}^{\text{em}}(E, r) = \frac{\sqrt{3}e^3}{m_e c^2} B_{\perp}(r) F\left[\frac{\nu}{\nu_c(B_{\perp}, E)}\right]$$

$$I_{\nu} = \int \epsilon_{\nu} \, \mathrm{d}\ell \quad \stackrel{\text{beam convolution}}{\longrightarrow} S_{\nu}$$
$$T_{\nu} = 10^{-23} \frac{S_{\nu}c^2}{2k_{\mathrm{B}}\Omega\nu^2} \, \mathrm{K}$$

brightness temperature

$$\beta_{\nu} = \frac{d \log T_{\nu}}{d \log \nu} = \mathcal{F}(j_e, B_{\perp})$$

SPECTRAL INDEX MAPS

$= \frac{d \log T_{\nu}}{d \log \nu} = \mathcal{F}(j_e, B_{\perp})$

Spatial variations of the spectral index β_{ν} reflects spatial variations of the CR electron flux and the magnetic field properties of the ISM along the LOS.

> Full sky maps of GSE show spatial variations of β already at the (low) angular resolution of 5 deg.

> LOFAR and SKA, with at least three times this angular resolution, will be able to investigate even finer variations of β .

SPECTRAL INDEX VAPS

$\beta_{\nu} = \frac{d \log T_{\nu}}{d \log \nu} = \mathcal{F}(j_e, B_{\perp})$

Mozdzen+ (2017,2019) $50 < \nu/MHz < 100 : -2.59 < \beta < -2.54 \pm 0.01$ $90 < \nu/MHz < 190 : -2.62 \pm 0.02 < \beta < -2.60$

Platania+ (1998) $1.4 < \nu/\text{GHz} < 7.5 : \beta = -2.81 \pm 0.16$

Spatial variations of the spectral index β_{ν} reflects spatial variations of the CR electron flux and the magnetic field properties of the ISM along the LOS.

<u>General oversimplification</u>

Depending on the observing frequency, it is usually assumed that the CR electron spectrum contributing to the GSE is characterised by a single energy slope, s.

 $j_e(E) \propto E^s$

 $\nu < 408 \text{ MHz} \longrightarrow s = -2$ $\nu > 408 \text{ MHz} \longrightarrow s = -3$

This assumption avoids time-consuming calculations.

GALACTIC COSMIC-RAY ELECTRON FLUX

 $\nu < 408 \text{ MHz} \longrightarrow s = -2$ $\nu > 408 \text{ MHz} \longrightarrow s = -3$ $j_e(E) \propto E^s$ misinterpretation of GSE!

GALACTIC COSMIC-RAY ELECTRON FLUX $\nu < 408$ MHz = $J_e(E) \propto E^s$

misinterpretation of GSE!

Orlando (2018): multifrequency observations (radio, γ) plus V1, representative of intermediate Galactic latitudes $(10^{\circ} < |b| < 20^{\circ})$, including most of the local radio synchrotron emission within a radius of ~1 kpc around the Sun.

Padovani+ (2018): analytical four-parameter fitting formula that perfectly reproduces the power-law behaviour at low and high energies;

Below 50 GeV (energy range of interest) these two realisations differ on average by less than 25%.

408 MHz -

GALACTIC COSMIC-RAY ELECTRON FLUX

 $\nu < 408$ $J_e(E) \propto E^s$ misinterpretation of GSE!

The spectral energy slope *s* has large and continuous variations with energy

MODELLING SYNCHROTRON EMISSION

The electron energy range determining the synchrotron emission is *broad*.

 $B_{\perp} = 2 - 20 \ \mu G$ (Heiles & Troland 2005; Beck 2005; Ferrière 2010)

MODELLING SYNCHROTRON EMISSION: UNIFORM SLAB

Brightness temperature for a 1 pc slab with a fixed, spatially uniform, component of the magnetic field B_{\perp} varying from 2 to 20 μ G exposed to the CR electron flux. Frequency range $\nu = 115 - 189$ MHz; frequency resolution $\Delta \nu = 183$ MHz; angular resolution $\theta_b = 4'$ (representative of LOFAR HBA observations by Jelić + 2015).

1st take-home message: s cannot be assumed as constant to interpret GSE;

2nd take-home message: the choice of the CR electron spectrum is crucial.

The highly accurate determination of β allowed by current (e.g. LOFAR) and future (e.g. SKA) instruments is a strong motivation for modelling GSE, avoiding oversimplifications.

MODELLING SYNCHROTRON EMISSION: NUMERICAL SIMULATIONS

The gas evolves under the joint influence of turbulence, magnetic fields, and thermal instabilities, and separates into three different phases: CNM, WNM, and unstable.

weak-field" case $\langle B \rangle = 4 \ \mu G$

Snapshots of the Galactic diffuse matter (Bellomi+ 2020) over a box of 50 pc, 128³ pixels, effective resolution of 0.39 pc; initial homogeneous density $n_{\rm H} = 1.5~{\rm cm}^{-3}$, T = 8000 K, uniform magnetic field $\mathbf{B}_0 = B_0 \hat{e}_x$.

> "strong-field" case $\langle B \rangle = 20 \ \mu G$

TEMPERATURE VAPS

T is higher where B_{\perp} is larger; strong field case: highest T in the POSs containing B_{x} ; T maps more inhomogeneous in the POS yz of both snaphots, since in this POS, B_{\perp} has a significant turbulent component.

 $\mu = \sigma_{B_{\perp}}/B_{\perp}$

$\nu = 130 \text{ MHz}, \theta_b = 6.7', L = 50 \text{ pc}$

to quantify the relative turbulent component of B_{\perp}

SPECTRAL INDEX β ($\nu = 115 - 189$ MHz) $\nu < 408 \text{ MHz} \longrightarrow s = -2 \longrightarrow \beta = \frac{s-3}{2} = -2.5$ $\nu > 408 \text{ MHz} \longrightarrow s = -3$ $j_e(E) \propto E^s$

Bivariate distributions

3rd take-home message: β variations can only be explained by accounting for a non-constant energy spectral slope s.

Same considerations holds in the highfrequency regime ($\nu \gtrsim 408$ MHz), where the assumption s = -3, then $\beta = -3$, turns out to be incorrect.

> Only in the case of almost no turbulence ($\mu \simeq 0$), i.e. constant B_{\perp} along the LOS, β can be assumed constant. Still a very unlikely case.

POLARISATION FRACTION p ($\nu = 115 - 189$ MHz) $\nu < 408 \text{ MHz} \longrightarrow s = -2 \qquad \longrightarrow \qquad p = \frac{3 - 3s}{7 - 3s} = \frac{3 + 3\beta}{1 + \beta} = 69\%$ $\nu > 408 \text{ MHz} \longrightarrow s = -3$ $j_e(E) \propto E^s$

Bivariate distributions

Depolarisation effects are here mainly caused by the tangling of the turbulent component of the magnetic field along the LOS (see POSs yz). This effect has been already reported in the literature in both the radio (e.g. Gaensler+ 2011) and in the submillimetre domain (Planck Coll. Int. XX 2015).

Bracco et al. (in prep.): synchrotron polarisation can be severely affected by Faraday rotation, especially at a few hundred of MHz (rot. angle $\propto \lambda^2 n_e B_{\parallel} d\ell$).

A LOOK-UP PLOT FOR B

-2.5

-2.6

-2.7

-2.8

-2.9

-3.0

-3.1

-3.2

A method to estimate $\langle B_{\perp} \rangle$ for a given j_{ρ} . $\beta(\nu, \langle B_{\perp} \rangle) = \frac{d \log T_{\nu}(\langle B_{\perp} \rangle)}{d \log \nu}$

- for each POS, the estimates of β in the three frequency intervals correspond to the same $\langle B_{\perp} \rangle$;
- there is a preferred ν range ($\simeq 0.1 - 5$ GHz), where s, then β , varies the most (isocontours) of $\langle B_{\perp} \rangle$ are more separated).

A LOOK-UP PLOT FOR B

A method to estimate $\langle B_{\perp} \rangle$ for a given j_e . $\beta(\nu, \langle B_{\perp} \rangle) = \frac{d \log T_{\nu}(\langle B_{\perp} \rangle)}{d \log \nu}$

4th take-home message:

it is advisable to simultaneously observe in narrow frequency ranges with high spectral resolution (as the L, M, and H intervals) in order to have independent β estimates that should follow a specific isocontour of B_{\perp} .

> Frequency ranges of the main current and future facilities

-2.5-2.6-2.7-2.8-2.9-3.0-3.1-3.2 10^{1}

TAKE-HOME MESSAGES

1st take-home message: s cannot be assumed as constant to interpret GSE;

2nd take-home message: the choice of the CR electron spectrum is crucial;

3rd take-home message: β variations can only be explained by accounting for a non-constant energy spectral slope s;

4th take-home message: it is advisable to simultaneously observe in narrow frequency ranges with high spectral resolution in order to have independent β estimates that should follow a specific isocontour of B_{\perp} .

