INTENSITY MAPPING IN THE POST REIONIZATION ERA

Matteo Viel 3rd national workshop on the SKA project 5-10-2021

 $\Omega_{\rm HI} \sim \Omega_{\nu} \sim \Omega_{\star}$

- Mild or no evolution over 12 Gyrs (in the same period UV, thermal state star formation change dramatically).
- Most of the HI (in mass) associated to Damped Lyman-Alpha systems, most of the HI (in volume) probed by the Lymanalpha forest.

Intensity mapping

Linear theory model: $P_{21 \text{ cm}}(k, \mu, z) = \overline{T}_b(z)^2 [(b_{\text{H}\,\text{I}}(z) + f(z)\mu^2)^2 P_{\text{m}}(k, z) + P_{\text{SN}}(z)],$

$$M_{\rm H\,I}(M, z) = M_0 \left(\frac{M}{M_{\rm min}}\right)^{\alpha} \exp(-(M_{\rm min}/M)^{0.35}).$$

M_{min} decreases with redshift alpha increases with redshift

$$\begin{split} \bar{I}_{b}(z) &= 189h \bigg(\frac{H_{0}(1+z)^{2}}{H(z)} \bigg) \Omega_{\mathrm{H}1}(z) \; \mathrm{mK}, \\ \bar{\Omega}_{\mathrm{H}1}(z) &= \frac{1}{\rho_{c}^{0}} \int_{0}^{\infty} n(M,z) M_{\mathrm{H}1}(M,z) \, dM, \\ b_{\mathrm{H}1}(z) &= \frac{1}{\rho_{c}^{0} \Omega_{\mathrm{H}1}(z)} \int_{0}^{\infty} n(M,z) b(M,z) M_{\mathrm{H}1}(M,z) \, dM, \\ P_{\mathrm{SN}}(z) &= \frac{1}{(\rho_{c}^{0} \Omega_{\mathrm{H}1}(z))^{2}} \int_{0}^{\infty} n(M,z) M_{\mathrm{H}1}(M,z) \, dM, \end{split}$$

- degeneracy between b_{HI} and Ω_{HI} broken by using other probes (cross-corr.)
- low-z HI bias (~0.8) from observations (Obuljen+18) -Pen+09, Switzer+13 (auto and cross to constrain Ω_{HI} x b_{HI}), Anderson+18 (cross. with galaxies).
- IM signal: main ingredient is the function $M_{\text{HI}}(M_{\text{halo}})$ with its scatter.

Towards a consistent model

<u>...obtained from an interplay between</u> <u>hydrosims and galaxy formation models</u>

...further progress: interfacing this "small-scale" accurate and physical information with large scale methods for extensive mock productions e.g. PINOCCHIO LPT light-cone halos (Spinelli, Carucci+2021)

Simulating intensity mapping signal: large scales

- Scale dependence bias also present in massive neutrino cosmologies.
- M_{HI}(M) not affected by the presence of neutrinos.
- HI is more clustered in massive neutrino sims. (but Ω_{HI} lower) because small mass haloes are suppressed i.e. impact on $n_{HALO}(M)$.
- IM alone would provide constraint of about $\Sigma(M_v) = 30$ meV (not very constraining compared to other probes).
- Radiative transfer postprocessing important but does not impact much the limit above.

BAOs with SKA1-MID - I

Villaescusa-Navarro, Alonso, MV, 2017

BAOs with SKA1-MID - III

Villaescusa-Navarro, Alonso, MV, 2017

BAOs with SKA1-MID - IV

Villaescusa-Navarro, Alonso, MV, 2017

z range	$\langle z \rangle$	mask		σ_{α}	
			(C)	(C+N)	(C+N+FG)
[0.36-0.75]	0.6	no yes	$\begin{array}{c} 1.008 \pm 0.016 \\ 1.006 \pm 0.020 \end{array}$	1.008 ± 0.016 1.006 ± 0.021	$\begin{array}{c} 1.007 \pm 0.016 \\ 1.006 \pm 0.024 \end{array}$
[0.75 - 1.26]	1.0	no yes	0.996 ± 0.010 0.997 ± 0.012	0.997 ± 0.011 0.997 ± 0.013	0.996 ± 0.011 0.998 ± 0.015
[1.26 - 1.98]	1.6	no yes	$\begin{array}{c} 1.001 \pm 0.011 \\ 1.000 \pm 0.013 \end{array}$	1.004 ± 0.014 1.003 ± 0.016	$\begin{array}{c} 1.003 \pm 0.014 \\ 1.004 \pm 0.019 \end{array}$
[1.98 - 3.05]	2.5	no yes	$\begin{array}{c} 1.004 \pm 0.013 \\ 1.004 \pm 0.016 \end{array}$	1.003 ± 0.021 1.002 ± 0.026	$\frac{1.000 \pm 0.021}{1.002 \pm 0.031}$
			2-3% recovery of the peak position @ z=2.5 —> geometry constrained		

Simulating intensity mapping signal: small scales

Villaescusa-Navarro+18 based on Illustris TNG

- Modeling of HI halo important also for halo models - Surely affected by feedback but maybe also sensitive to DM nature?
- Large scatter in the HI density profile.
- Mass dependence and central vs. satellites galaxies important to compare with observations.

Simulating intensity mapping signal: small scales

• Shot noise level in HI quite different from the standard case of galaxies and haloes good amount of HI substructure within each DM halo

• Note further that *numerical convergence of all quantities not fully achieved*.

Beyond ΛCDM

- Analysis made using present CMB data combined with realistic mock MeerKAT observations
- For ΛCDM adding $\mathsf{P}_{21}\text{ improves }\mathsf{H}_0$ and Ω_c
- Beyond Λ CDM parameters improve at the 10% level with z=0.39 bin
- Adding tomography (z<1) improves at 35% level

Maria Berti+2021 arXiv: 2109.03256

Cross-correlations of GWs with IM

Giulio Scelfo+2021 arXiv: 2106.09786

- Statistical inference of GW distribution dN/dz due to exquisite frequency resolution of IM.
- Determination of the nature of progenitors (primordial vs. astrophysical BHs).
- Potentially detect non standard evolution of Dark Energy at high redshift.

Simulating intensity mapping signal: WDM and bispectrum

Saxena, Majumdar, Kamran, MV 2020

<u>SUMMARY</u>

- HI important cosmic tracer to perform **quantitative cosmology** in the post-reionization era.
- Fundamental physics addressed with realistic forecasting methods: Neutrino masses
 Extending the Hubble diagram with BAO observations at high-z
 Modified gravity
 Nature of Dark Matter
 Cross-correlations
- Mocking 21cm maps with N-body simulations with inputs calibrated with high-res hydro sims and/or semi-analytical models of structure formation is promising (NOTE: small scales are also needed).