Filippo Maccagni MeerKAT Fornax Survey Team (PI P. Serra) @ INAF/OAC Mhongoose Survey Team (PI de Blok) @ ASTRON

Cold Gas in nearby radio

galaxies

Osservatorio Astronomico di Cagliari

AST<mark>RON</mark>

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 679627).

Outline

• Goal

Study neutral hydrogen (HI) from the micro-scale (r~100 pc) to the macro-scale (>100 kpc)

• Fundamental question

• Does cold gas contribute in regulating the recursive nuclear activities of galaxies?

Observations

• ATCA-HI observations of NGC 3100

Maccagni, Kleiner, Ruffa, Ragusa, Loni, Serra, Prandoni, Iodice

MeerKAT-HI observations of NGC1566 & NGC5643

Mhongoose, MeerKAT open time

• MeerKAT, ALMA, MUSE observations of Fornax A

MeerKAT Fornax Survey — Maccagni et al. 2020, Maccagni et al. 2021

• Bring home message

- The look of HI in galaxies is changing thanks to the SKA precursors
 - •We can <u>for the first time</u> to study extensively the physics of low column density HI (<10^19 cm-2).
 - Multi-wavelength studies of nearby galaxies (<1000 Mpc) are crucial to understand the life-cycle of AGNs

NGC3100

Radio loud ETG <u>Ilaria's talk</u>

36hrs ATCA HI observations

6 antennas, 6.6 km/s Datacube noise: 1 mJy/b channel

 3σ detection limit cm⁻² — 90" resolution: ~1 x 10¹⁹ cm⁻²

NGC3100

NGC3100: Modelling the Absorption

Mod_Abs : geometrical model of a disk in front of radio continuum.

• MCMC fit all possible inclinations and PA of that produce an absorption line

The best match has i & PA equal to the CO disk (Ruffa et al. 2020)

From ATCA to MeerKAT

10 hours observations with **MeerKAT** of 2 nearby massive Seyfert galaxies

64 antennas, 25 kHz (1 km/s) or 3.2 kHz (1.4 km/s)

Datacube noise: 0.3 mJy/b channel

 3σ detection limit cm⁻² at 30" resolution over 5 channels: <1 x 10^{^19} cm⁻²

NGC1566 (Mhongoose, PI de Blok)

<u>Mhongoose</u>: MeerKAT LSP of 30 nearby galaxies of varying masses observed for 60 hours.

Extra-planar low-column density gas $(\sim 10^{19})$ easily detected.

From ATCA to MeerKAT

HI Gas Accretion in Seyferts (PI Maccagni + INAF-OAC-BO-FI + ASTRON + SARAO + Curtin)

- MeerKAT open time 10 hrs HI observations of 4 Seyfert galaxies
 - N5643, N1433, ESO 428GO14 & CenA

0.0010

0.0005

0.0000

-0.0005

0.06

0.04

 $-44^{\circ}05'$

10'

15'

 $14^{h}33^{m}20^{s}$

Fornax A

Fornax A

Fornax A — Outline

• The flickering activity of Fornax A [Maccagni et al., 2020]

F. Maccagni, M. Murgia, P. Serra, F. Govoni, K. Morokuma-Matsui, D. Kleiner, D. Molnar, M. Ramatsouku [OAC (INAF)]; MeerKATHI group & MeerKAT commissioning team @ SARAO

Radio continuum observations between 84 MHz and 217 GHz

determine the flux density distribution of the radio lobes and jets and <u>infer the</u> <u>history and timescale of the nuclear activity of Fornax A</u>

AGN Feeding and Feedback in Fornax A (r<6 kpc) [Maccagni et al. 2021]

F. Maccagni, P. Serra [OAC-INAF], M. Gaspari [Princeton], T. Oosterloo [Astron], K. Morokuma-Matsui [IOA - Tokyo Uni.], M. Onodera [NAOJ], D. Kleiner [INAF-OAC]

CO (1-0), HI & Ionized gas

what processes sustain the rapid recursive activity of Fornax A

The Central Jets

The Flickering Activity of Fornax A

Phase 1:

- 24 Myr ago began the <u>last</u> injection of the lobes
- 12 Myr ago AGN switch-off

Phase 2:

- 3 Myr ago AGN formed the jets
- 1 Myr ago AGN switch-off

Phase 3:

• kpc-core may be active (< 1 Myr)

What regulates the fast duty cycle?

merger 1 Gyr: did not trigger the latest phases of the AGN but brought turbulent gas and filaments

Cold Gas Distribution and Kinematics

Ionised Gas Distribution and Kinematics

Moment maps from simultaneous multicomponent fits of [OIII], Balmer lines, [SII] and [NII] ([OI] is also detected)

Rotation axis (NW-SE) similar to the cold gas Several deviations:

- EW stripe & filaments
 Mom
- Clouds in the wake of the radio jets

M (Ion) = 1.6 x 10⁶ M $_{\odot}$

Multi-Phase Outflow in Fornax A

<u>Ionised gas:</u>
w80 > 600 km s⁻¹ in the wake of the radio jets

Cold gas

w80 > 600 km s⁻¹ in along the jets and in the outer ring

At its outflow velocity (2000 km s⁻¹) the outer ring would have reached its distance from the centre in ~ 3 Myr

Age of the radio jets

The Kinematical Plot (K-Plot)

- **Green** all independent l.o.s. in the innermost arcminute
- **Blue** pixels matching with the rotating model

Kinematical plot of the [NII]6583 line

- ▶ width of the line vs velocity centroid w.r.t. v_{sys}
 - Gaspari et al. 2018

Regions With Similar Kinematics

broad line-widhts (R6) -> outflow in the wake of the radio jet

narrow line-widhts -> EW stripe and filament
and stripes

K-plot of HI and CO shows same properties

Kinematical plot of the [NII]6583 line

 naturally identifies loci with common kinematics

AGN Feeding in Fornax A

• C-Ratio

cooling time / eddy turnover time

- measures the role of turbulence in causing condensation of the gas
- EW filaments
 - turbulence may cause cooling and infall
- Outflow
 - very different physical conditions

Purple ellipsis

 expectations of Cold Chaotic Accretion simulations (Gaspari+13,18...) for infalling material

The EW stripe and filaments may be feeding the AGN

Conclusions

 The HI component of the circumnuclear disk of NGC3100 is revealed through absorption.

• The kinematics are similar to the molecular component: rotation+inflow?/outflow?

Short MeerKAT observations reveal low column density (10¹⁹ cm⁻²) extra-planar gas and absorption against low-power radio sources (<30 mJy)

The nucleus of Fornax A is rapidly flickering [Maccagni et al., A&A, 2020]
 MeerKAT (HI) ALMA (CO 1-0) MUSE (ionised gas) observations of the innermost 6 kpc suggest the gas is distributed in a

- Multi-phase AGN feedback is on-going
 - outflow along the radio jets and in the outer ring
 - radial velocity of outflowing ring consistent with age of the radio jets
 - Multi-phase AGN feeding is on-going
 - EW gaseous stripe is condensing and falling onto the AGN
- Cold chaotic accretion may be self-regulating the flickering activity of Fornax A