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Figure 13. The colour image and the contours show the final, overall value
of σ v achieved by targeting the NQSO objects with the best individual σ v

values (cf. Fig. 11) and by employing a given combination of telescope size,
efficiency and total integration time. The total integration time is split equally
among the targets. The contour levels are at σ tot

v = 2, 3, 4 and 5 cm s−1.

for the experiment. The steepness of the contours also indicate that
σ tot

v does not depend very sensitively on NQSO, at least for NQSO !
10.

For further illustration we now perform an MC simulation of
a redshift drift experiment using this target selection strategy. We
(arbitrarily) choose NQSO = 20 and O = 2 so that the overall accuracy
of the experiment is σ tot

v = 2.34 cm s−1 (cf. Fig. 13). Furthermore
we assume that the observations span a time interval of "t0 = 20 yr
and that the true ż(z) is given by our standard cosmological model.
The result is presented in Fig. 14 where we show as blue dots one
realization of the ‘observed’ velocity drifts and their errors along
with the input model (red solid line). Since the selected 20 targets
cover the redshift range 2.04 " zQSO " 3.91 quite homogeneously
we have binned the measurements into four equally sized redshift
bins.

By construction these points represent the most precise mea-
surement of ż that is possible with a set of 20 QSOs (using equal
time allocation) and O = 2. However, since many of the selected
QSOs lie near the redshift where ż = 0 (for the assumed model)
the redshift drift is only detected with an overall significance of
S = |v̇|/σ tot

v̇ = 1.4, where |v̇| is the weighted mean of the absolute
values of the expected velocity drifts.

This can be improved upon by choosing our second approach
and selecting targets by the largest value of |v̇|/σv̇ . This quantity
is a strongly increasing function of redshift and this selection strat-
egy results in quite a different set of objects: the best 20 targets
according to this criterion include only three of the objects previ-
ously selected. For O = 2, "t0 = 20 yr and equal time allocation as
before, the combined overall significance of this sample is S = 2.7
(assuming our standard model of ż is correct). The yellow squares
in Fig. 14 show the result of an MC simulation using this set-up
and implementation, except that we use NQSO = 10 (in two redshift
bins) which gives a slightly better significance of S = 3.1. To reach
S # 4 we need to further reduce NQSO to 3, or instead increase O to
3.4 or "t0 to 25.4 yr.

Figure 14. The three sets of ‘data’ points show MC simulations of the
redshift drift experiment using the three different example implementations
discussed in the text. In each case we have assumed an observational set-
up of O = 2 and we plot as ‘data’ points the ‘observed’ values and error
bars of the velocity drift v̇, expected for a total experiment duration of
"t0 = 20 yr and for standard cosmological parameters (h70 = 1, #M =
0.3, #$ = 0.7). For a given QSO we use the centre of the Lyα forest as
the redshift of the v̇ measurement. Blue dots: selection by σ v , NQSO =
20 (binned into four redshift bins), equal time allocation. Yellow squares:
selection by |v̇|/σv̇ , NQSO = 10 (in two redshift bins), equal time allocation.
Brown triangles: selection by best combined constraint on #$, NQSO = 2,
optimal time distribution. The solid lines show the expected redshift drift for
different parameters as indicated, and h70 = 1. The grey shaded areas result
from varying H0 by ±8 km s−1 Mpc−1.

Finally, we turn to our third approach and the question of how to
best select targets to constrain the acceleration of the expansion and
what can be achieved in this respect with our sample of known QSOs.
As in the previous case the answer will depend on what to expect
for the expansion history and in particular for the acceleration. For
the purpose of the following discussion we will again assume our
standard cosmological model.

The simplest thing we can do to constrain the acceleration is
to unambiguously detect its existence, i.e. to measure ż > 0 with
the highest possible significance. This implies (i) that we need a v̇

measurement at z < z0, where z0 is defined by v̇(z0) = 0 and (ii)
that target selection should proceed by the largest value of v̇/σv ,
which indeed favours the lowest available redshifts. However, even
if we use only the single best object by this criterion and assume
a generous "t0 = 25 yr then a 2σ v detection of v̇ > 0 would still
require an unfeasible O = 9.5. The reason for not being able to do
better is of course our inability to access the Lyα forest at z ≈ 0.7
where v̇ is the largest.

Let us analyse the situation more systematically by switching to
the parameter space of our cosmological model (which is three-
dimensional since we will not assume spatial flatness). In this pa-
rameter space our goal of detecting the acceleration translates to
proving that the deceleration parameter q0 = #M/2 − #$ is <0.
However, in our model the acceleration is due to a cosmological
constant, and so for simplicity we will instead pursue the slightly
easier goal of proving the existence of a cosmological constant, i.e.
of placing a positive lower limit on #$ after having marginalized
over #M and H0.

Consider the constraint of a single measurement of v̇ = "v/"t0

at some z (i.e. provided by some QSO), which happens to be pre-
cisely equal to its expected value. Obviously, a single data point
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pixel i scales as the inverse of the integration time we now write σ j i

as
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where f j is the fraction of the total tint used at the jth epoch (
∑

j
f j =

1), and σ i denotes the flux error (in the ith pixel) that one would
obtain if half of the total tint were used. Further defining "tj ≡
hj"t0, we can rewrite equation (20) as
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The first term above is just the variance of mi that one obtains in
the case of Ne = 2 and equal splitting of tint. The second term is a
‘form factor’ that only depends on the distribution of tint within "t0.
Again, it is straightforward to show that g(Ne = 2, f 1 = f 2 = 0.5) =
1. Since the form factor is the same for all pixels, and since σ 2

mi
is

the dominant term in equation (21), the sought-after modification of
the σ v scaling relation amounts to simply applying the form factor
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× g(Ne, f1...Ne ) cm s−1. (24)

Note that the symbol ‘S/N’ now refers to the total S/N per object
accumulated over all epochs, in contrast to equations (15) and (16)
where it referred to the S/N achieved in each of two epochs.

Note also that we have dropped the dependence of the form factor
on h1...Ne by considering every night within the period "t0 as a
potential epoch. This fixes Ne and hj = (j − 1)/(Ne − 1), while f j is
constrained to lie in the range 0 ! f j ! l/tint, where l is the length of
a night (which we will assume to be 9 h on average). Thus we find
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Clearly, f j will be 0 for most nights. Nevertheless, there are ob-
viously a large number of different possible distributions for the
f j values. The best distributions are those that are symmetric and
peaked towards the endpoints of "t0. A flat distribution, with equal
observations taking place on n equally spaced nights, results in
g =

√
3 (n − 1)/(n + 1) ≈ 1.7 for n ≫ 1. Thus the otherwise

quite desirable arrangement of observing at a more or less constant
rate throughout the period "t0 comes with a rather severe penalty
attached. A priori, it is difficult to estimate the best g value that can
be realistically achieved in practice. From now on we will assume,
perhaps somewhat arbitrarily, that all observations occur as much as
possible towards the beginning and end of "t0 with the constraint
that the observing rate averaged over some intermediate time-scale
of, say, a month cannot exceed 1/3, i.e. that no more than a third of
any month’s telescope time is used for the redshift drift experiment.
Depending on the ratio of tint and "t0 this results in g values of
∼1.1. Essentially, this configuration simply shortens the effective
length of the experiment by the amount of time it takes to complete
the observations at either end of "t0.

7 C A N W E C O L L E C T E N O U G H P H OTO N S ?

In Sections 4–6 we learnt what S/N ratio is required to achieve a
given sensitivity to radial velocity shifts using QSO absorption spec-
tra. In a photon-noise-limited experiment the attainable S/N depends

only on four quantities: the brightness of the source, the size of the
telescope’s collecting area, the total integration time and the total
efficiency. By ‘total efficiency’ we mean the ratio of the number
of detected photoelectrons to the number of source photons at the
top of the atmosphere, i.e. it comprises atmospheric absorption and
all losses occurring in the combined telescope/instrument system,
including entrance aperture losses and the detector’s quantum effi-
ciency.

In this section we will investigate in detail the five-dimensional
parameter space that is spanned by the above four quantities and
redshift, in order to determine whether a feasible combination exists
that would allow a meaningful ż measurement.

7.1 S/N formula

We begin by writing down the relation between the S/N per pixel
and the above four parameters for the photon-noise-limited case:

S
N
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ϵ

0.25
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, (26)

where D, tint and ϵ are the telescope diameter, total integration time
and total efficiency, ZX and mX are the zero-point and apparent mag-
nitude of the source in the X band, respectively, and Zr = (8.88 ×
1010) s−1 m−2 µm−1 is the AB zero-point (Oke 1974) for an effec-
tive wavelength of 6170 Å [corresponding to the Sloan Digital Sky
Survey (SDSS) r band]. The normalization of the above equation as-
sumes a pixel size of 0.0125 Å (see Section 4.4) and a central ob-
scuration of the telescope’s primary collecting area of 10 per cent.
D = 42 m corresponds to the Baseline Reference Design for the
European ELT (E-ELT; Gilmozzi & Spyromilio 2007).

7.2 High-redshift QSOs

The photon flux from QSOs is of course not a free parameter that
can be varied at will. Instead we will have to content ourselves
with what will be offered by the population of real QSOs known
at the time of a hypothetical ż experiment. Here we do not wish to
speculate on possible future discoveries of QSOs and hence we will
restrict ourselves to the ones known already today. In the following
we will extract a list of potential targets for a ż experiment from
existing QSO catalogues. For each candidate target QSO we will
need a reliable magnitude that can be used to estimate its photon
flux, as well as its redshift.

The largest QSO catalogue with reliable, homogeneous photome-
try and redshifts currently available is the fourth edition of the SDSS
Quasar Catalogue (Schneider et al. 2007). Being based on the fifth
data release of the SDSS, it yields 16 913 QSOs with zQSO " 2.
The catalogue provides point spread function (PSF) magnitudes in
the ugriz bands which we do not correct for Galactic extinction (as
is appropriate for S/N calculations). Since we are interested in the
continuum flux we will use, for each QSO, the magnitude of the
bluest filter that still lies entirely redwards of the QSO’s Lyα emis-
sion line. Specifically, for objects with zQSO < 2.2 we will use the
g-band magnitude; for 2.2 ! zQSO < 3.47 the r band; for 3.47 !
zQSO < 4.61 the i band; and for 4.61 ! zQSO the z band. We then
apply a small correction to the selected magnitude to transform the
observed flux to that expected at the centre of the Lyα forest as-
suming a power-law spectral shape of the form f ν ∝ ν−0.5 (Francis
1993).

Unfortunately, the SDSS catalogue does not cover the whole sky.
The largest collection of QSOs covering the entire sky is the 12th
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Clearly, f j will be 0 for most nights. Nevertheless, there are ob-
viously a large number of different possible distributions for the
f j values. The best distributions are those that are symmetric and
peaked towards the endpoints of "t0. A flat distribution, with equal
observations taking place on n equally spaced nights, results in
g =
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3 (n − 1)/(n + 1) ≈ 1.7 for n ≫ 1. Thus the otherwise

quite desirable arrangement of observing at a more or less constant
rate throughout the period "t0 comes with a rather severe penalty
attached. A priori, it is difficult to estimate the best g value that can
be realistically achieved in practice. From now on we will assume,
perhaps somewhat arbitrarily, that all observations occur as much as
possible towards the beginning and end of "t0 with the constraint
that the observing rate averaged over some intermediate time-scale
of, say, a month cannot exceed 1/3, i.e. that no more than a third of
any month’s telescope time is used for the redshift drift experiment.
Depending on the ratio of tint and "t0 this results in g values of
∼1.1. Essentially, this configuration simply shortens the effective
length of the experiment by the amount of time it takes to complete
the observations at either end of "t0.
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In Sections 4–6 we learnt what S/N ratio is required to achieve a
given sensitivity to radial velocity shifts using QSO absorption spec-
tra. In a photon-noise-limited experiment the attainable S/N depends

only on four quantities: the brightness of the source, the size of the
telescope’s collecting area, the total integration time and the total
efficiency. By ‘total efficiency’ we mean the ratio of the number
of detected photoelectrons to the number of source photons at the
top of the atmosphere, i.e. it comprises atmospheric absorption and
all losses occurring in the combined telescope/instrument system,
including entrance aperture losses and the detector’s quantum effi-
ciency.
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parameter space that is spanned by the above four quantities and
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where D, tint and ϵ are the telescope diameter, total integration time
and total efficiency, ZX and mX are the zero-point and apparent mag-
nitude of the source in the X band, respectively, and Zr = (8.88 ×
1010) s−1 m−2 µm−1 is the AB zero-point (Oke 1974) for an effec-
tive wavelength of 6170 Å [corresponding to the Sloan Digital Sky
Survey (SDSS) r band]. The normalization of the above equation as-
sumes a pixel size of 0.0125 Å (see Section 4.4) and a central ob-
scuration of the telescope’s primary collecting area of 10 per cent.
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7.2 High-redshift QSOs

The photon flux from QSOs is of course not a free parameter that
can be varied at will. Instead we will have to content ourselves
with what will be offered by the population of real QSOs known
at the time of a hypothetical ż experiment. Here we do not wish to
speculate on possible future discoveries of QSOs and hence we will
restrict ourselves to the ones known already today. In the following
we will extract a list of potential targets for a ż experiment from
existing QSO catalogues. For each candidate target QSO we will
need a reliable magnitude that can be used to estimate its photon
flux, as well as its redshift.

The largest QSO catalogue with reliable, homogeneous photome-
try and redshifts currently available is the fourth edition of the SDSS
Quasar Catalogue (Schneider et al. 2007). Being based on the fifth
data release of the SDSS, it yields 16 913 QSOs with zQSO " 2.
The catalogue provides point spread function (PSF) magnitudes in
the ugriz bands which we do not correct for Galactic extinction (as
is appropriate for S/N calculations). Since we are interested in the
continuum flux we will use, for each QSO, the magnitude of the
bluest filter that still lies entirely redwards of the QSO’s Lyα emis-
sion line. Specifically, for objects with zQSO < 2.2 we will use the
g-band magnitude; for 2.2 ! zQSO < 3.47 the r band; for 3.47 !
zQSO < 4.61 the i band; and for 4.61 ! zQSO the z band. We then
apply a small correction to the selected magnitude to transform the
observed flux to that expected at the centre of the Lyα forest as-
suming a power-law spectral shape of the form f ν ∝ ν−0.5 (Francis
1993).

Unfortunately, the SDSS catalogue does not cover the whole sky.
The largest collection of QSOs covering the entire sky is the 12th
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Figure 13. The colour image and the contours show the final, overall value
of σ v achieved by targeting the NQSO objects with the best individual σ v

values (cf. Fig. 11) and by employing a given combination of telescope size,
efficiency and total integration time. The total integration time is split equally
among the targets. The contour levels are at σ tot

v = 2, 3, 4 and 5 cm s−1.

for the experiment. The steepness of the contours also indicate that
σ tot

v does not depend very sensitively on NQSO, at least for NQSO !
10.

For further illustration we now perform an MC simulation of
a redshift drift experiment using this target selection strategy. We
(arbitrarily) choose NQSO = 20 and O = 2 so that the overall accuracy
of the experiment is σ tot

v = 2.34 cm s−1 (cf. Fig. 13). Furthermore
we assume that the observations span a time interval of "t0 = 20 yr
and that the true ż(z) is given by our standard cosmological model.
The result is presented in Fig. 14 where we show as blue dots one
realization of the ‘observed’ velocity drifts and their errors along
with the input model (red solid line). Since the selected 20 targets
cover the redshift range 2.04 " zQSO " 3.91 quite homogeneously
we have binned the measurements into four equally sized redshift
bins.

By construction these points represent the most precise mea-
surement of ż that is possible with a set of 20 QSOs (using equal
time allocation) and O = 2. However, since many of the selected
QSOs lie near the redshift where ż = 0 (for the assumed model)
the redshift drift is only detected with an overall significance of
S = |v̇|/σ tot

v̇ = 1.4, where |v̇| is the weighted mean of the absolute
values of the expected velocity drifts.

This can be improved upon by choosing our second approach
and selecting targets by the largest value of |v̇|/σv̇ . This quantity
is a strongly increasing function of redshift and this selection strat-
egy results in quite a different set of objects: the best 20 targets
according to this criterion include only three of the objects previ-
ously selected. For O = 2, "t0 = 20 yr and equal time allocation as
before, the combined overall significance of this sample is S = 2.7
(assuming our standard model of ż is correct). The yellow squares
in Fig. 14 show the result of an MC simulation using this set-up
and implementation, except that we use NQSO = 10 (in two redshift
bins) which gives a slightly better significance of S = 3.1. To reach
S # 4 we need to further reduce NQSO to 3, or instead increase O to
3.4 or "t0 to 25.4 yr.

Figure 14. The three sets of ‘data’ points show MC simulations of the
redshift drift experiment using the three different example implementations
discussed in the text. In each case we have assumed an observational set-
up of O = 2 and we plot as ‘data’ points the ‘observed’ values and error
bars of the velocity drift v̇, expected for a total experiment duration of
"t0 = 20 yr and for standard cosmological parameters (h70 = 1, #M =
0.3, #$ = 0.7). For a given QSO we use the centre of the Lyα forest as
the redshift of the v̇ measurement. Blue dots: selection by σ v , NQSO =
20 (binned into four redshift bins), equal time allocation. Yellow squares:
selection by |v̇|/σv̇ , NQSO = 10 (in two redshift bins), equal time allocation.
Brown triangles: selection by best combined constraint on #$, NQSO = 2,
optimal time distribution. The solid lines show the expected redshift drift for
different parameters as indicated, and h70 = 1. The grey shaded areas result
from varying H0 by ±8 km s−1 Mpc−1.

Finally, we turn to our third approach and the question of how to
best select targets to constrain the acceleration of the expansion and
what can be achieved in this respect with our sample of known QSOs.
As in the previous case the answer will depend on what to expect
for the expansion history and in particular for the acceleration. For
the purpose of the following discussion we will again assume our
standard cosmological model.

The simplest thing we can do to constrain the acceleration is
to unambiguously detect its existence, i.e. to measure ż > 0 with
the highest possible significance. This implies (i) that we need a v̇

measurement at z < z0, where z0 is defined by v̇(z0) = 0 and (ii)
that target selection should proceed by the largest value of v̇/σv ,
which indeed favours the lowest available redshifts. However, even
if we use only the single best object by this criterion and assume
a generous "t0 = 25 yr then a 2σ v detection of v̇ > 0 would still
require an unfeasible O = 9.5. The reason for not being able to do
better is of course our inability to access the Lyα forest at z ≈ 0.7
where v̇ is the largest.

Let us analyse the situation more systematically by switching to
the parameter space of our cosmological model (which is three-
dimensional since we will not assume spatial flatness). In this pa-
rameter space our goal of detecting the acceleration translates to
proving that the deceleration parameter q0 = #M/2 − #$ is <0.
However, in our model the acceleration is due to a cosmological
constant, and so for simplicity we will instead pursue the slightly
easier goal of proving the existence of a cosmological constant, i.e.
of placing a positive lower limit on #$ after having marginalized
over #M and H0.

Consider the constraint of a single measurement of v̇ = "v/"t0

at some z (i.e. provided by some QSO), which happens to be pre-
cisely equal to its expected value. Obviously, a single data point
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edition of the Catalogue of Quasars and Active Nuclei recently pub-
lished by Véron-Cetty & Véron (2006), which contains many addi-
tional bright QSOs not included in the SDSS catalogue. However,
since the Véron catalogue is a compilation of data from many dif-
ferent sources its photometry is very inhomogeneous and cannot
readily be converted to a photon flux. We will dispense with this
inconvenience by matching the Véron catalogue to the all-sky Su-
perCOSMOS Sky Survey (SSS; Hambly et al. 2001). Although the
photographic SSS photometry is not endowed with reliable abso-
lute calibrations either, at least it is homogeneous and covers three
bands (BJ, R and I), allowing us to synthesize approximate SDSS
magnitudes.

We proceed by first selecting all QSOs from the Véron catalogue
with zQSO ! 2 and not flagged as unreliable, resulting in 21 895
objects. For each of these we then identify the nearest SSS object,
allowing a maximum separation of 5 arcsec, and retrieve the cor-
responding SSS catalogue data. 938 Véron objects have no SSS
counterpart, presumably because their coordinates are unreliable.
We then use those 11 744 objects that are in common to the SDSS
and combined Véron–SSS catalogues to derive linear relations be-
tween the SDSS and SSS magnitudes, allowing for zero-point off-
sets and colour terms. Such relations are reasonable representations
of the data and we find that the distributions of the residuals have
rms values of less than 0.3 mag in all cases. Finally, we purge the
common objects from the Véron–SSS catalogue and use the above
relations to synthesize an SDSS magnitude in the appropriate band
(see above) for each of the remaining QSOs.

For those QSOs in the initial Véron catalogue that have no match
in the SSS, or which are missing an SSS band needed to synthesize
the required SDSS magnitude, we will simply use the V- or R-
band magnitude as listed in the Véron catalogue, provided it is
non-photographic.

In summary, the final combined sample of 25 974 QSOs is con-
structed from three subsets: (i) SDSS; (ii) objects with redshifts
from the Véron catalogue and photometry from the SSS (converted
to the SDSS system) and (iii) objects where both the redshifts and
the photometry are taken from the Véron catalogue. We remind the
reader that the quality and reliability of the photometry decreases
rapidly from (i) to (iii).

7.3 Achievable radial velocity accuracy

In Fig. 11 we plot our QSO sample, split by the above subsets,
in the Nphot–zQSO plane, where Nphot is a QSO’s photon flux at the
top of the atmosphere and at the centre of the QSO’s Lyα forest,
as implied by the appropriate magnitude described above. Using
equations (24) and (26) and assuming values for D, ϵ and tint we can
calculate, for any given combination of Nphot and zQSO, the value of
σ v that would be achieved if all of the time tint were invested into
observing a single QSO with the given values of Nphot and zQSO.
The background colour image and solid contours in Fig. 11 show
the result of this calculation, where we have assumed D = 42 m,
ϵ = 0.25 and tint = 2000 h. Note that we have included both the
improvement of σ v afforded by the Lyβ forest and the metal lines
as well as the deterioration caused by spreading tint over a 0.9 yr
period at either end of a %t0 = 20 yr interval.

From Fig. 11 we can see that, although challenging, a reasonable
measurement of ż(z) is within reach of a 42-m telescope. There exist
a number of QSOs that are bright enough and/or lie at a high enough
redshift to provide reasonable values of σ v . We find 18 objects at σ v

< 4 cm s−1 and five objects at σ v < 3 cm s−1, with good coverage
of the redshift range 2–4. One object even gives σ v = 1.8 cm s−1.

Figure 11. The dots show the known, bright, high-redshift QSO population
(separated by subsets as indicated, see text) as a function of redshift and
estimated photon flux at the centre of the Lyα forest. Along the right-hand
vertical axis we have converted the photon flux to a corresponding Johnson
V-band magnitude. The background colour image and solid contours show
the value of σ v that can be achieved for a given photon flux and redshift,
assuming D = 42 m, ϵ = 0.25 and tint = 2000 h. The contour levels are at
σ v = 2, 3, 4, 6, 8 and 10 cm s−1. The dotted contours show the same as the
solid ones, but for D = 35 m or, equivalently, for ϵ = 0.17 or tint = 1389 h.

Figure 12. The colour image and the contours show the number of QSOs
for which the σ v value on the ordinate or better can be achieved for a given
combination of telescope size, efficiency and integration time. The contour
levels are at NQSO = 3, 5, 10 and 30.

However, for a smaller telescope with D = 35 m the number of
objects with σ v < 4 cm s−1 reduces to only 7 (cf. dotted contours).

In Fig. 12 we show more comprehensively how the number of
QSOs with σ v smaller than a given value depends on the telescope
parameters and integration time, which we summarize into a single
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pixel i scales as the inverse of the integration time we now write σ j i

as

σ 2
j i = σ 2

i

0.5
f j

, (22)

where f j is the fraction of the total tint used at the jth epoch (
∑

j
f j =

1), and σ i denotes the flux error (in the ith pixel) that one would
obtain if half of the total tint were used. Further defining "tj ≡
hj"t0, we can rewrite equation (20) as

σ 2
mi

=
2σ 2

i

"t2
0

{

4

[

∑

j

h2
j f j −

(

∑

j

h j f j

)2 ]}−1

= σ 2
mi

(Ne = 2, f1 = f2 = 0.5) g2(Ne, h1...Ne , f1...Ne ). (23)

The first term above is just the variance of mi that one obtains in
the case of Ne = 2 and equal splitting of tint. The second term is a
‘form factor’ that only depends on the distribution of tint within "t0.
Again, it is straightforward to show that g(Ne = 2, f 1 = f 2 = 0.5) =
1. Since the form factor is the same for all pixels, and since σ 2

mi
is

the dominant term in equation (21), the sought-after modification of
the σ v scaling relation amounts to simply applying the form factor

σv = 1.35

(

S/N
3350

)−1 (

NQSO

30

)−1/2 (

1 + zQSO

5

)−1.7

× g(Ne, f1...Ne ) cm s−1. (24)

Note that the symbol ‘S/N’ now refers to the total S/N per object
accumulated over all epochs, in contrast to equations (15) and (16)
where it referred to the S/N achieved in each of two epochs.

Note also that we have dropped the dependence of the form factor
on h1...Ne by considering every night within the period "t0 as a
potential epoch. This fixes Ne and hj = (j − 1)/(Ne − 1), while f j is
constrained to lie in the range 0 ! f j ! l/tint, where l is the length of
a night (which we will assume to be 9 h on average). Thus we find

g(Ne, f1...Ne ) =
Ne − 1

2

[

Ne−1
∑

j=1

j2 f j −

( Ne−1
∑

j=1

j f j

)2
]−1/2

. (25)

Clearly, f j will be 0 for most nights. Nevertheless, there are ob-
viously a large number of different possible distributions for the
f j values. The best distributions are those that are symmetric and
peaked towards the endpoints of "t0. A flat distribution, with equal
observations taking place on n equally spaced nights, results in
g =

√
3 (n − 1)/(n + 1) ≈ 1.7 for n ≫ 1. Thus the otherwise

quite desirable arrangement of observing at a more or less constant
rate throughout the period "t0 comes with a rather severe penalty
attached. A priori, it is difficult to estimate the best g value that can
be realistically achieved in practice. From now on we will assume,
perhaps somewhat arbitrarily, that all observations occur as much as
possible towards the beginning and end of "t0 with the constraint
that the observing rate averaged over some intermediate time-scale
of, say, a month cannot exceed 1/3, i.e. that no more than a third of
any month’s telescope time is used for the redshift drift experiment.
Depending on the ratio of tint and "t0 this results in g values of
∼1.1. Essentially, this configuration simply shortens the effective
length of the experiment by the amount of time it takes to complete
the observations at either end of "t0.

7 C A N W E C O L L E C T E N O U G H P H OTO N S ?

In Sections 4–6 we learnt what S/N ratio is required to achieve a
given sensitivity to radial velocity shifts using QSO absorption spec-
tra. In a photon-noise-limited experiment the attainable S/N depends

only on four quantities: the brightness of the source, the size of the
telescope’s collecting area, the total integration time and the total
efficiency. By ‘total efficiency’ we mean the ratio of the number
of detected photoelectrons to the number of source photons at the
top of the atmosphere, i.e. it comprises atmospheric absorption and
all losses occurring in the combined telescope/instrument system,
including entrance aperture losses and the detector’s quantum effi-
ciency.

In this section we will investigate in detail the five-dimensional
parameter space that is spanned by the above four quantities and
redshift, in order to determine whether a feasible combination exists
that would allow a meaningful ż measurement.

7.1 S/N formula

We begin by writing down the relation between the S/N per pixel
and the above four parameters for the photon-noise-limited case:

S
N

= 700

[

Z X

Zr

100.4(16−m X )

(

D

42 m

)2
tint

10 h
ϵ

0.25

]1/2

, (26)

where D, tint and ϵ are the telescope diameter, total integration time
and total efficiency, ZX and mX are the zero-point and apparent mag-
nitude of the source in the X band, respectively, and Zr = (8.88 ×
1010) s−1 m−2 µm−1 is the AB zero-point (Oke 1974) for an effec-
tive wavelength of 6170 Å [corresponding to the Sloan Digital Sky
Survey (SDSS) r band]. The normalization of the above equation as-
sumes a pixel size of 0.0125 Å (see Section 4.4) and a central ob-
scuration of the telescope’s primary collecting area of 10 per cent.
D = 42 m corresponds to the Baseline Reference Design for the
European ELT (E-ELT; Gilmozzi & Spyromilio 2007).

7.2 High-redshift QSOs

The photon flux from QSOs is of course not a free parameter that
can be varied at will. Instead we will have to content ourselves
with what will be offered by the population of real QSOs known
at the time of a hypothetical ż experiment. Here we do not wish to
speculate on possible future discoveries of QSOs and hence we will
restrict ourselves to the ones known already today. In the following
we will extract a list of potential targets for a ż experiment from
existing QSO catalogues. For each candidate target QSO we will
need a reliable magnitude that can be used to estimate its photon
flux, as well as its redshift.

The largest QSO catalogue with reliable, homogeneous photome-
try and redshifts currently available is the fourth edition of the SDSS
Quasar Catalogue (Schneider et al. 2007). Being based on the fifth
data release of the SDSS, it yields 16 913 QSOs with zQSO " 2.
The catalogue provides point spread function (PSF) magnitudes in
the ugriz bands which we do not correct for Galactic extinction (as
is appropriate for S/N calculations). Since we are interested in the
continuum flux we will use, for each QSO, the magnitude of the
bluest filter that still lies entirely redwards of the QSO’s Lyα emis-
sion line. Specifically, for objects with zQSO < 2.2 we will use the
g-band magnitude; for 2.2 ! zQSO < 3.47 the r band; for 3.47 !
zQSO < 4.61 the i band; and for 4.61 ! zQSO the z band. We then
apply a small correction to the selected magnitude to transform the
observed flux to that expected at the centre of the Lyα forest as-
suming a power-law spectral shape of the form f ν ∝ ν−0.5 (Francis
1993).

Unfortunately, the SDSS catalogue does not cover the whole sky.
The largest collection of QSOs covering the entire sky is the 12th
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which give the most precise estimate of the column density of D I. To access these lines in absorption systems at z~3, 
as in previous studies (Pettini & Cooke 2012), requires a wavelength coverage at least to 3700 Å. However, as 
illustrated by Pettini & Cooke (2012), many of the best Deuterium abundance measurements are obtained at even 
lower redshifts, down to z~2.6, indicating that a wavelength coverage extending to 3300 Å would be desirable. 

 
 
 
 
Table.5. Summary of science requirements for fundamental physics and cosmology 
 (E=essential; D=desirable) 

Science 
case 

 Spectral 
resolution 

(λ /Δλ) 

Wavel. 
range 
(µm) 

Wavel. 
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(m s-1) 
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(m s-1) 

Multi-
plex 

Backgr. 
subtr. 

AO / 
IFU 

Polarim. 

 
Fundamental 
constants 
& T(CMB) 

E 80,000 0.37-0.67 2 

(relative) 
2 night-1 none not critical no no 

D 100,000 0.33-0.8 1 

(relative) 
1 night-1 none desirable no no 

Deuterium 
abundance 

E 50,000 0.37-0.7 50 not critical none not crit. no no 

D 100,000 0.33-1.0 50 not critical none <1%a no no 

 
Sandage test 

E 100,000 0.37-0.67 0.02 

(absolute) 
0.02 night-1 none not critical no no 

D 150,000 0.33-0.8 0.01 

(absolute) 
0.01 night-1 none desirable no no 

a Faint quasars limit. 
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w0 - wa parametrization of dark energy one finds that the constraints on these parameters are not significantly improved 
by redshift drift measurements to CMB data, while those on H0 and Ωm are improved as above. This means that the 
redshift drift is not able to break the existing degeneracy between w0 and wa. To break this degeneracy one would need 
to add low-redshift measurements of the redshift drift, which SKA may provide. 

Vielzeuf & Martins (2012) have also shown that combining redshift drift and precision spectroscopy measurements of 
varying couplings (discussed above) gives HIRES a further advantage: it allows it to test classes of cosmological 
models that would otherwise be difficult to distinguish from ΛCDM (because they would be extremely similar at low 
redshifts). It will also allow it to check the consistency of reconstructions of the redshift dependence of the dark energy 
equation of state. Last but not least, there are also important synergies between redshift drift measurements and Euclid, 
which are presently being quantified within Euclid Consortium working groups. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
5.4. The CMB temperature: Mapping the bright universe 
 
When one finds direct evidence for new physics, it will only be believed once it is seen through multiple independent 
probes. It is therefore crucial to develop consistency tests; in other words, astrophysical observables whose behaviour 
will also be non-standard as a consequence of varying couplings or dynamical dark energy. 

One of the most precise measurements in cosmology is the intensity spectrum of the cosmic microwave background 
(CMB) radiation: at z = 0 one finds a very precise black-body spectrum. However, this measurement tells us nothing 
about the behaviour of the CMB at non-zero redshift. The CMB temperature-redshift relation, T(z) = T0 (1 + z), is a 
robust prediction of standard cosmology; it assumes adiabatic expansion and photon number conservation, but it is 
violated in many scenarios, including string theory inspired ones, as well as models where α varies. 
Phenomenologically one can parametrize deviations to this law by adding an extra parameter, say T(z) = T0(1 + z)1−β. 
The recent spectroscopic measurements at redshifts z ~ 2 - 3 by Noterdaeme et al. (2011), combined with 
measurements of the SZ effect at resdshifts z < 1, yield the β = −0.01 ± 0.03. 
The distance duality relation, dL(z) = (1+z)2 dA(z) is an equally robust prediction of standard cosmology; it assumes a 
metric theory of gravity and photon number conservation, but again is violated if photon number is not conserved. In 
fact, in many such models (including varying-α ones) the temperature-redshift relation and the distance duality relation 
are not independent: a direct relation exists between  violations of to the two laws. This link allowed Avgoustidis et al. 
(2012) to use distance duality measurements to further constrain β, yielding β = 0.004 ± 0.016, which is a 40% 
improvement on the direct constraint. Moreover, the size and redshift dependence of this violation is also related to 
the evolution of α. 

!
Fig.12. 2D constraints on the w0-Ωm and H0-Ωm planes using CMB (blue), redshift drift (red) and 
combining the two probes (green). Reproduced from Martinelli et al. (2012), where the precise 
assumptions are described. 
!
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Figure 1. Left panel: Gaussian LFC model line with 11 pixels in the main dispersion direction. Right panel: Standard 
deviation of the fitted Gaussian pixel centroids versus the pixel size fraction of 1,000 simulations of the Gaussian 
LFC model line. The legend gives the pixels at which we simulate the pixel size variations, which is equivalent to 
tuning the LFC to scan different pixels. Solid and dashed lines show the results of these simulations without and 
with using flat-field global corrections. The pix1-2 and the pix5-6 are the tail and the peak of the Gaussian LFC 

model line. 

 
 
For ESPRESSO we will create a dedicated raw data type (PIXEL_GEOM) to calibrate CCD pixel size 
inhomogeneities. The corresponding template will acquire a sequence of laser comb exposures with 
different comb parameters in order to scan the CCD pixels. In the analysis, flat-field spectra will also 
be needed to disentangle pixel sensitivity and pixel size effects. 
 
A possible algorithm to measure pixel size is briefly described below: 
 

1. For each extracted pixel, create a flux vs. delta_lambda plot, where delta_lambda is the laser 
comb frame-to-frame wavelength shift. 

2. Provided line flux is constant (or calibrated), the obtained plot represents a comb line sampled 
by the specific extracted pixel under consideration. The FWHM of the obtained line is then 
directly related to physical pixel size (exact formula TBD). 

 
The end product of the pixel size calibration is a "pixel size frame" in S2D format that provides a 
physical coordinate along the main dispersion direction. 

3.7//Wavelength/Calibration/
The ESPRESSO DRL computes independent wavelength solutions for each order in the extracted S2D 
spectra. Conceptually, the process is similar for the two wavelength calibration light sources: the ThAr 
lamp and the laser frequency comb (LFC). In a first step, emission lines are searched on the spectra 
and fitted with a Gaussian profile. The rationale for choosing this particular fitting function is the 
following. The centroid of a line is well-defined only for symmetric line profiles. For wavelength 
calibration we approximate the instrument PSF as Gaussian and effectively define the wavelength of a 
line as the centroid of the best-fitting Gaussian. The systematic effects of this approach on the derived 
wavelength accuracy of spectral features in science frames will be studied and tabulated based on the 
actual PSFs of ESPRESSO. This strategy should allow us to reach the required absolute accuracy of 10 
m/s on the wavelength calibration. 
 
In a second step, a polynomial wavelength solution is fitted through all line positions and wavelengths. 
In practice, the algorithms differ slightly between ThAr and LFC, as described below. 
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Figure 1. Left panel: Gaussian LFC model line with 11 pixels in the main dispersion direction. Right panel: Standard 
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tuning the LFC to scan different pixels. Solid and dashed lines show the results of these simulations without and 
with using flat-field global corrections. The pix1-2 and the pix5-6 are the tail and the peak of the Gaussian LFC 

model line. 
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by the specific extracted pixel under consideration. The FWHM of the obtained line is then 
directly related to physical pixel size (exact formula TBD). 

 
The end product of the pixel size calibration is a "pixel size frame" in S2D format that provides a 
physical coordinate along the main dispersion direction. 
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lamp and the laser frequency comb (LFC). In a first step, emission lines are searched on the spectra 
and fitted with a Gaussian profile. The rationale for choosing this particular fitting function is the 
following. The centroid of a line is well-defined only for symmetric line profiles. For wavelength 
calibration we approximate the instrument PSF as Gaussian and effectively define the wavelength of a 
line as the centroid of the best-fitting Gaussian. The systematic effects of this approach on the derived 
wavelength accuracy of spectral features in science frames will be studied and tabulated based on the 
actual PSFs of ESPRESSO. This strategy should allow us to reach the required absolute accuracy of 10 
m/s on the wavelength calibration. 
 
In a second step, a polynomial wavelength solution is fitted through all line positions and wavelengths. 
In practice, the algorithms differ slightly between ThAr and LFC, as described below. 
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