

- RT, Gas Dynamics in Cosmology
- CRASH, GAMESH, dustyGadget

ERC FIRST HPC-class Projects @ INAF-DAR

Luca Graziani

In collaboration with:

ISTITUS

PNOIZAN

- S. Salvadori (Kaptein, Groningen)
- R. Schneider (INAF-OAR, Italy)
- D. Kawata (UCL, UK)
- B. Ciardi (MPA Garching, Germany)
- A. Ferrara (SNS, Italy)
- A. Ferrara (Sino, Italy) S. Bianchi (INAF-Arcetri, Italy)

2015 ICT workshop, Oct 06-09 2015, Cefalu', Italy

ERC-Starting grant Project FIRST: the first stars and galaxies

The FIRST team and collaborators

Matteo de Bennassuti, PhD INAF/OAR

Stefania Marassi, Pdoc INAF/OAR

Raffaella Schneider, PI INAF/OAR

Rosa Valiante, Pdoc INAF/OAR

Marco Limongi INAF/OAR

Stefania Salvadori Kepteyn, Groningen

Simone Bianchi INAF/OAA

Roberto Maiolino Cambridge

Andrea Ferrara Scuola Normale

ara Gen Chiaki ^{Iale} Tokyo University

Kazu Omukai Tohoku University

Cosmology / Star formation / formation of the Milky Way

• Mechanical feedback: galaxy dynamical

interactions.

• Chemical feedback: stellar evolution, chemical

enrichment, interplay with CGM and IGM.

Radiative feedback: IGM reionisation →

Star formation.

Reionisation

Scale of the problem? → Universe (> 100 cMpc ??)

Spectral lines of QSOs (OVI CIV CIII Sill CII Sill Fell MgII)

- H, He, Metal atoms highly ionized: Why?
- What radiation field at fixed z?

C.R.A.S.H.

Cosmological RAdiative transfer Scheme for Hydrodynamics

- RT code based on MC + Ray tracing.
- Describes **3D** RT cosmological scenarios.
- Solves time dependent RT on cosmological scales → Cosmic Reionisation of H and He.
- Implements detailed H,He physics + metal ions (in pipeline with other codes).

CRASH4

Multi-frequency band RT:

- \rightarrow UV+ soft x-rays: 10 KeV.
- \rightarrow Include Lya RT coupled with continuum.
- → LW band and molecules: H_2 , CO.
- → Dust.

Intrinsic Parallel framework:

- → OpenMP for ray tracing and Chemistry.
- → MPI to map the topology of the Cosmic Web.

Parallelism in CRASH4

Package 2

Package 3

Cormological Radiative Transfer Comparison Project Workshop IV

The University of Texas at Austin December 12-14, 2012

Conference on Scientific Computing- CSC 2013

GALAXY FORMATION WITH N-BODY SIMULATIONS Scale? (< 4 cMpc ??)

GAMESH = GAMETE + CRASH + N-Body

N-Body simulation: dynamical evolution of DM halos

GAMETE simulation: Star formation, metal production

CRASH simulation: RT, gas ionisation heating

High redshift (6.5 < z < 7.5) dusty galaxies ???

- Watson et al., 2015: Direct detection of dust emission!
- Schaerer et al., 2015: Sample of five high-z, star-forming galaxies: estimates for dust properties, stellar emission, star formation rates, dust masses, [C II] luminosity, UV attenuation, stellar masses.
- Maiolino et al., 2015: three spectroscopically confirmed Lyman Break Galaxies at 6.8<z<67.1. CII line detection (also see Gallerani et al. 2012, Williams et al., 2014)

- Disentangle the role of various feedback
 Processes in place
- Estimate of the evolutionary status of the galaxy by both SFR, atomic metals and dust.
- Interplay between ISM and IGM ->Escape fraction in many spectral bands → Reionisation

Need to **update theoretical models of galaxy formation** (both semi-analytical and numerical):

feedback (chemical), feedback (radiative), feedback (mechanical) !!

- Improve chemo-dynamical existing schemes:
 - \rightarrow updated metal yields.
 - \rightarrow Improve schemes of metal spreading.
- Extend with dust production and spreading:
 - → Updated dust production yields.
 - \rightarrow Detailed study of AGB vs SNII impact on total dust.
- Molecules (H2) and grain growth in molecular clouds.
- H-ionising UV and x-rays are not sufficient!
- Self consistent photo-ionisation of metals requires to follow Photons with energies well below 8eV (Sil).
- Molecules and Dust require to account for LW and Lya

Mechanical

- Galactic and Extra-galactic winds.
- Interplay between radiation and dust!

Multi-phase ISM

Chemical

Radiative

DustyGadget : Dust inside and around Galaxies

What is needed to do RT, Nbody, Gas dynamics??

• Supercomputers: capacity&capability → PRACE ??

- **Parallel/Distributed** technologies → Open source / Industry

Human resources

→ Post-docs + Students (MSC+PhD)

→ Transfer of knowledge

• Skills

Supercomputers in Europe → PRACE ??

CURIE: French Tier-0 supercomputer

SuperMUC: German Tier-0 supercomputer

FERMI: Italian Tier-0 supercomputer

Huge facilities → code ready? Huge facilities → competitive

access

Competitive for production runs ??? DEVELOPMENT ??

Parallel/Distributed technologies \rightarrow **too many** ...

CURIE: French Tier-0 supercomputer

FERMI: Italian Tier-0 supercomputer

SuperMUC: German Tier-0 supercomputer

OMP → Algorithm ready?
 MPI → scaling with problem
 Native threads → difficult
 Functional Parallelisation

 → time !!!
 Optimisation libs →
 Implementor dependent

PRACE is necessary but not so easy..

CURIE: French Tier-0 supercomputer

SuperMUC: German Tier-0 supercomputer

FERMI: Italian Tier-0 supercomputer

Necessary on global HPC * competition

Requires time&commitment! *

Requires Skills& code Predevelopment and scaling

Human resources.....

Research in Astronomy is based on : permanent staff → well established research field

Post-docs \rightarrow **Innovation required** \rightarrow

International competition

PhD students \rightarrow 3-4 yrs to learn both

astronomy and HPC

Compare time scales of HPC with lifetime of people in Astronomy \rightarrow do we need a national HPC facility ??

We do not need to replicate PRACE but complement PRACE.