Chandra data analysis: tutorial

Astrophysics Laboratory course - AA2020-21

The spacecraft

Only one instrument in the focal plane "active" for each observation

Outline of the Chandra tutorial

- Chandra webpage, software and data download
- Data structure
- Chandra threads and main parameter evaluation
- Data reprocessing and filtering
- Imaging analysis
 - □ Image visualization
 - Pileup & Webpimms
 - □ Source photon statistics
 - Destreak (in case of pileup)
 - □ Smoothing
 - Contours
 - □ Choice of source and background regions
- □ Timing analysis: lightcurves & evaluation of variability
- Spectral extraction

Chandra webpage & software CIAO

https://cxc.cfa.harvard.edu/ciao

All relevant documents about telescope + instruments and manuals can be found here

Data download: the Chandra archive

Chandra webchaser: https://cda.harvard.edu/chaser/

Chandra		Ok	servation Sea	rch			
X-ray Center	New Search					Retrieval List Help	Chandra Data Archive
Search							Reset
File Upload	Coordinates	le selected					
			Cone Search				
Target Name	3C111	Resolve Name	RA/Long/l	Dec/Lat/b			
Name Resolver	SIMBAD/NED	9	Coord System Equatoria	Il J2000 ♦ Equinox 2000	Radius 10 arcmin		
Observation ID		Sequence Number		Proposal	Number		
Proposal Title		PI Name		Observe	r Name		
Start Date		Public Release Date					
Exposure Time (ks)		Approved Time (ks)		<u>Avg. Co</u>	unt Rate (hz)		
Archived Observed Scheduled Unobserved Untriggered	Sola Star <u>Science Category</u> WD BH SN,	ar System rs and WD Binaries and CV and NS Binaries SNR and Isolated NS		Туре	ER GO GTO TOO DDT CAL	00 01 02 03 04	
Instrument ACIS ACIS-I ACIS-S HRC	Grating HET	ne G <u>Exposure Mo</u> I G	ACIS TE ACIS CC HRC Timing	Joint Observatories	None HST NOAO NRAO NuSTAR	00 01 02 03 04	Grid
Customize Output:							
Sort Order	Status 🗘 oascend	ling descending					
Row Limit	50 🗘						
Coord System	Equatorial J2000 \$ Equinox 2000	Format Sexagesimal (hh/dd m	m ss.ss) 🔹				
Save As	+						

Selection possible on the basis of source name/coordinates/PI name/ObsID, etc

View Observation Information

Search Results

Search Results Retrieval List H

Add Products to Retrieval List Secondary package

elect all	Unselect all	

Select \$	Row	Seq Num	¢ <u>Obs ID</u> ¢	Instrument +	Grating ¢	Appr Exp 🗢	Exposure 4	Target Name	¢ <mark>PI Name</mark> ◆	RA ¢	Dec ¢	Status 🕈	Data Mode	Exp Mode	Avg Cnt Rate \$	Evt Cnt \$	Start Date	Public Release Date	Proposal 4	<u>Type</u>	Obs Cycle +	Prop Cycle +	Science Category \$	Joint +
		1 702798	14990	ACIS-S	NONE	127.0	92.1	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	5.65	520726	2013-01-10 04:29:04	2014-01-15 01:50:57	14700630	GO	14	14	ACTIVE GALAXIES AND QUASARS	HST
	:	2 703007	16219	ACIS-S	HETG	150.0	143.41	3C 111	Tombesi	04 18 21.30	+38 01 35.80	archived	FAINT	TE	7.64	1095075	2014-11-04 10:48:56	2015-11-07 05:25:42	15700397	GO	15	15	ACTIVE GALAXIES AND QUASARS	None
	:	3 703412	19615	ACIS-S	NONE	26.0	22.54	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	3.07	69154	2017-12-26 15:46:41	2019-01-02 16:11:57	18700471	GO	18	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
	-	4 703412	20907	ACIS-S	NONE	32.0	28.16	5 3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	2.97	83648	2017-12-29 03:21:51	2019-01-02 16:11:57	18700471	GO	18	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
	:	5 703412	20908	ACIS-S	NONE	32.0	27.23	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	2.93	79812	2017-12-29 18:15:31	2019-01-02 16:11:57	18700471	GO	18	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
		6 703413	19616	ACIS-S	NONE	24.0	23.5	5 3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.78	159244	2019-01-03 10:22:18	2020-01-08 07:02:05	18700471	GO	19	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
	· ·	7 703413	22023	ACIS-S	NONE	16.0	15.69	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.60	103548	2018-12-30 08:04:59	2020-01-08 07:02:05	18700471	GO	19	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
	1	8 703413	22024	ACIS-S	NONE	20.0	19.6	5 3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.74	132160	2018-12-29 06:55:26	2020-01-08 07:02:05	18700471	GO	19	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
		9 703413	22025	ACIS-S	NONE	17.0	16.18	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.48	104876	2019-01-06 08:00:32	2020-01-08 07:02:05	18700471	GO	19	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
	10	0 703413	22026	ACIS-S	NONE	13.0	12.76	5 3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.54	83434	2019-01-07 03:32:32	2020-01-08 07:02:05	18700471	GO	19	18	ACTIVE GALAXIES AND QUASARS	HST+NuSTAR
Totals						0.00	0.00									0								

View O	Ch X-r bservat	andra ay Cent ion Informat	YOU New Search	u can vi	ew the o	details o	f each c	observati	ion				Add Pr	Sear	eval List	S nary parkage ondary packa tom selection	
Select	Row	Seq Num	Obs ID	Instrument	Grating	Appr Exp \$	Exposure \$	Target Name	♦ <u>PI Name</u>	¢ <u>RA</u> ¢	Dec \$	<u>Status</u> \$	Data Mode	Exp Mode \$	Avg Cnt Rate \$	Evt Cnt \$	Start Date
		1 702798	14990	ACIS-S	NONE	127.0	92.1	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	5.65	520726	2013-01-10 04:29:04
		2 703007	16219	ACIS-S	HETG	150.0	143.41	3C 111	Tombesi	04 18 21.30	+38 01 35.80	archived	FAINT	TE	7.64	1095075	2014-11-04 10:48:50
		3 703412	19615	ACIS-S	NONE	26.0	22.54	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	3.07	69154	2017-12-26 15:46:4
		4 703412	20907	ACIS-S	NONE	32.0	28.16	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	2.97	83648	2017-12-29 03:21:5
		5 703412	20908	ACIS-S	NONE	32.0	27.23	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	2.93	79812	2017-12-29 18:15:3
		6 703413	19616	ACIS-S	NONE	24.0	23.5	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.78	159244	2019-01-03 10:22:1
		7 703413	22023	ACIS-S	NONE	16.0	15.69	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.60	103548	2018-12-30 08:04:59
		8 703413	22024	ACIS-S	NONE	20.0	19.6	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.74	132160	2018-12-29 06:55:20
		9 703413	22025	ACIS-S	NONE	17.0	16.18	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.48	104876	2019-01-06 08:00:32
	\mathbf{X}	10 703413	22026	ACIS-S	NONE	13.0	12.76	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	6.54	83434	2019-01-07 03:32:32
<u>Totals</u>						0.00	0.00									0	

Seq. # ObsID

Expo

Mark one (all) of these boxes to select the observation(s) for the download An archive (.tar) file will be prepared for the download. This contains both primary and secondary datasets needed for immediate use for scientific purposes or complete reprocessing using the most up-to-date calibrations and CIAO tools

Details of the observation: instrument setup, CCDs in use, abstract of the proposal, pipeline-processed products, etc.

Observation ID: 20908

Observation ID: 20908	Sequence Number:	703412	Status:	archived
Add to Patriaval List	Observation ID:	20908	Proposal Number:	18700471
Add to Retileval List	Type:	GO	Proposal Cycle:	18
Primary package	PI Name:	Perlman	Observer:	Perlman
<u>Secondary package</u> <u>Custom selection</u>	Science Category:	ACTIVE GALAXIES AND QUASARS	Joint Observatories:	HST+NuSTAR
	Target Name:	3C 111	Grid Name:	
	RA (J2000):	04 18 21.30		
Summary Details	Dec (J2000):	+38 01 36.00		
V&V Report Proposal Abstract	Instrument:	ACIS-S	Data Mode:	VFAINT
Images Publications	Grating:	NONE		
Data packages	Start Date:	2017-12-29 18:15:31	Observing Cycle:	18
Primary Secondary	Approved Time:	32.00 ks	Public Release Date:	2019-01-02 16:11:57
External links Processing Status	Exposure Time:	27.23 ks		
Sequence Summary				
Related Observations				
By Sequence				

<u>By Proposal</u> By Monitor/Followu<u>r</u> By Grou<u>p</u> By Grid

Sequence number: six-digit number, the first one provides the category of your observations (7=AGN, 8=clusters, etc.)

ALTERNATIVELY

• find_chandra_obsid '3c111'

# obsid	sepn	inst	grat	time	obsdate	e pir	name		target	
9279	0.0 AC	IS-S	NONE	9.2	2008-12-	08 L	_ister '	'QSO	B0415	5+379"
14990	0.0 AC	SIS-S	NONE	E 92.1	l 2013-01	-10	Perlm	an	"3C	111"
16219	0.0 AC	S-S	HETG	6 143.4	4 2014-1 <i>°</i>	1-04	Tomb	esi	"3C	111"
19615	0.0 AC	S-S	NONE	E 22.5	5 2017-12	2-26	Perlm	an	"3C	111"
19616	0.0 AC	S-S	NONE	E 23.5	5 2019-01	-03	Perlm	an	"3C	111"
20907	0.0 AC	SIS-S	NONE	E 28.2	2 2017-12	2-29	Perlm	an	"3C	111"
20908	0.0 AC	SIS-S	NONE	E 27.2	2 2017-12	2-29	Perlm	an	"3C	111"
22023	0.0 AC	S-S	NONE	E 15.7	7 2018-12	2-30	Perlm	an	"3C	111"
22024	0.0 AC	S-S	NONE	E 19.6	6 2018-12	2-29	Perlm	an	"3C	111"
22025	0.0 AC	SIS-S	NONE	E 16.2	2 2019-01	-06	Perlm	an	"3C	111"
22026	0.0 AC	S-S	NONE	E 12.8	3 2019-01	-07	Perlm	an	"3C	111"

download_chandra_obsid 20908

In case you would like to download more than one dataset:

• download_chandra_obsid 20908, 22023

Data structure

- → package_4715_210211112723.tar
- tar xvf package_4715_210211112723.tar → directory 20908/

axaff20908N002_VV001_vv2.pdf 00README oif.fits primary secondary

PRIMARY

orbitf630504305N001_eph1.fits.gz pcadf20908_000N001_asol1.fits.gz acisf20908_000N002_bpix1.fits.gz acisf20908_000N002_fov1.fits.gz acisf20908N002_cntr_img2.jpg acisf20908N002_full_img2.jpg acisf20908N002_full_img2.fits.gz acisf20908N002_evt2.fits.gz acisf20908N002_cntr_img2.fits.gz

Scientific data + pointing information + bad pixel file + fully calibrated events (evt2)

Housekeeping files + bias + mask + unfiltered event file (evt1)

SECONDARY

acisf630958962N002_2_bias0.fits.gz acisf630958962N002_1_bias0.fits.gz acisf630959617N002_pbk0.fits.gz acisf630958962N002_4_bias0.fits.gz acisf630958962N002_3_bias0.fits.gz acisf20908_000N002_stat1.fits.gz acisf20908_000N002_flt1.fits.gz acisf20908_000N002_msk1.fits.gz acisf20908_000N002_mtl1.fits.gz acisf20908_000N002_evt1.fits.gz acisf20908_000N002_evt1.fits.gz acisf20908N002_VV001_vvref2.pdf.gz aspect ephem

FILE FORMAT

Instrument ObsID evt2 acisf20908N002_evt2.fits

f=flight file revision

file format

- The event file (and most of the files) are in FITS (Flexible Image Transport system) format
- A single Chandra file can contain multiple "datasets" (e.g., data, Good Time Intervals, weight map, regions) which are stored in "blocks"
- Blocks can contain image or table data
- The event file is a sort of 4-D array which stores for each event the information about position, energy and time of arrival of the photons + other info
- dmstat and dmlist (ciao tools) and fv (ftool) allows the visualization of these bloks

Columns	for Table Block EVE	NTS			dı	mlist acis	sf20908N002_evt2.fits cols
ColNo N	Name	Unit	Type Real8	Range	N	ull 7:630080571	1/2/988293 _ S/C TT correspond
ing to m	nid-exposure	5	Realo	030730377	.740007703	/.030707071.	1424700275 - 376 11 Correspond
2 c 3 n 4 e	ccd_id node_id expno		Int2 Int2 Int4	0:9 0:3 0:2147483	647		CCD reporting event CCD serial readout amplifier node Exposure number of CCD frame containin
g event							
5 c	chip(chipx,chipy)	pixel	Int2	1:1024		-	Chip coords
6 t	tdet(tdetx,tdety)	pixel	Int2	1:8192		9999	ACIS tiled detector coordinates
7 d	det(detx,dety)	pixel	Real4	0.50:	8192.50	-	ACIS detector coordinates
8 s	sky(x,y)	pixel	Real4	0.50:	8192.50	-	sky coordinates
9 p	oha	adu	Int4	0:36855		-	total pulse height of event
10 p	bha_ro	adu	Int4	0:36855		-	total read-out pulse height of event
11 e	energy	eV	Real4	0: 10000	00.0	-	nominal energy of event (eV)
12 p	pi 🦷	chan	Int4	1:1024		-	pulse invariant energy of event
13 f	fltgrade		Int2	0:255		-	event grade, flight system
14 g	grade		Int2	0:7		_	binned event grade
15 s	status[4]		Bit(4)				event status bits

fv acisf20908N002_evt2.fits &

	X fv:	Summary of ac	isf20908N002_evt2.fits in /Use	rs/chris/209	08/prim	nary/			
File Edit	Tools Help								
Index	Extension	Туре	Dimension		,	View			
0	Primary	Image	0	Header	lma	age	Table		
1	EVENTS	Binary	19 cols X 79812 rows	Header	Hist	Plot	All	Select	
2	GTI	Binary	2 cols X 1 rows	Header	Hist	Plot	All	Select	
3	GTI	Binary	2 cols X 1 rows	Header	Hist	Plot	All	Select	
4	GTI	Binary	2 cols X 1 rows	Header	Hist	Plot	All	Select	
<mark>=</mark> 5	GTI Binary		2 cols X 1 rows	Header	Hist	Plot	Ali	Select	

N(rows)=number of events (counts)

X,Y → image Time → lightcurve Energy → spectrum

Filo Edit Tools Holi

	10010 11010															
	📕 time	📕 ccd_id	📕 node_id	📕 expno	📕 chipx	📕 chipy	📕 tdetx	📕 tdety	📕 detx	📕 dety	= x	y	📕 pha	📕 pha_ro	📕 energy	📕 pi
Select	1D	11	11	1J	11	11	11	11	1E	1E	1E	1E	1J	1J	1E	1J
E All	S				pixel	pixel	pixel	pixel	pixel	pixel	pixel	pixel	adu	adu	eV	chan
Invert	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify	Modify
1	6.309596192244E+08	7	0	3	209	543	4126	2245	4.085047E+03	4.085341E+03	4.091167E+03	4.086680E+03	672	633	3.017436E+03	207
2	6.309596192654E+08	5	3	3	916	482	2749	2184	2.706741E+03	4.146783E+03	4.524422E+03	2.776798E+03	3209	3086	1.394219E+04	955
3	6.309596198654E+08	7	0	4	209	542	4126	2244	4.084777E+03	4.086250E+03	4.090444E+03	4.086167E+03	970	926	4.345534E+03	298
4	6.309596198654E+08	7	0	4	211	543	4128	2245	4.086773E+03	4.085231E+03	4.090685E+03	4.088395E+03	347	320	1.567771E+03	108
5	6.309596205065E+08	7	1	5	349	476	4266	2178	4.224621E+03	4.152829E+03	3.978516E+03	4.193259E+03	2488	2400	1.165656E+04	799
6	6.309596205065E+08	7	1	5	298	487	4215	2189	4.173684E+03	4.141106E+03	4.007604E+03	4.149833E+03	2390	2296	1.120366E+04	768
7	6.309596205065E+08	7	0	5	209	542	4126	2244	4.084398E+03	4.086232E+03	4.090669E+03	4.085931E+03	2527	2440	1.128461E+04	773
8	6.309596224707E+08	5	0	8	168	462	2001	2164	1.959395E+03	4.167341E+03	4.771360E+03	2.071485E+03	3302	3166	1.379771E+04	946
9	6.309596237117E+08	7	0	10	65	466	3982	2168	3.941393E+03	4.162204E+03	4.070549E+03	3.925552E+03	2419	2354	1.079245E+04	740
10	6.309596237117E+08	7	0	10	209	543	4126	2245	4.084776E+03	4.085232E+03	4.091432E+03	4.086943E+03	1857	1800	8.298562E+03	569
11	6.309596237938E+08	6	2	10	721	504	3596	2206	3.553048E+03	4.124812E+03	4.243748E+03	3.576005E+03	2881	2601	1.130080E+04	775
12	6.309596243527E+08	7	2	11	662	465	4579	2167	4.536815E+03	4.163266E+03	3.857635E+03	4.481687E+03	2781	2693	1.286337E+04	882
13	6.309596243527E+08	7	2	11	639	475	4556	2177	4.514225E+03	4.153705E+03	3.874612E+03	4.463980E+03	84	66	4.266755E+02	30
14	6.309596243527E+08	7	0	11	208	543	4125	2245	4.084055E+03	4.085335E+03	4.091644E+03	4.086332E+03	1575	1507	7.041094E+03	483
15	6.309596243938E+08	5	3	11	822	476	2655	2178	2.612880E+03	4.153604E+03	4.551589E+03	2.687238E+03	2458	2087	1.073777E+04	736
16	6.309596243938E+08	5	3	11	824	479	2657	2181	2.614495E+03	4.149846E+03	4.554526E+03	2.690084E+03	2426	2323	1.059783E+04	726
17	6.309596249938E+08	7	0	12	209	542	4126	2244	4.084401E+03	4.086235E+03	4.090743E+03	4.086373E+03	2992	2898	1.335465E+04	915
18	6.309596249938E+08	7	0	12	206	545	4123	2247	4.081780E+03	4.083964E+03	4.093799E+03	4.084732E+03	672	626	3.018106E+03	207
19	6.309596250348E+08	5	3	12	782	545	2615	2247	2.572497E+03	4.083971E+03	4.631102E+03	2.674345E+03	1643	1549	7.215011E+03	495
20	6.309596250348E+08	5	1	12	379	574	2212	2276	2.169646E+03	4.055335E+03	4.801278E+03	2.308081E+03	3219	3069	1.464343E+04	1003
21	6.309596263169E+08	5	1	14	374	519	2207	2221	2.165449E+03	4.110260E+03	4.751303E+03	2.284650E+03	2601	2464	1.183669E+04	811
22	6.309596263579E+08	6	3	14	947	511	3822	2213	3.779188E+03	4.117642E+03	4.169907E+03	3.790035E+03	387	288	1.486036E+03	102
23	6.309596269169E+08	7	0	15	58	494	3975	2196	3.934386E+03	4.134247E+03	4.099077E+03	3.929183E+03	2673	2598	1.194315E+04	819
24	6.309596269169E+08	7	2	15	573	515	4490	2217	4.447911E+03	4.113381E+03	3.935759E+03	4.416491E+03	2788	2715	1.291301E+04	885
25	6.309596269169E+08	7	0	15	209	545	4126	2247	4.085050E+03	4.083889E+03	4.092499E+03	4.087903E+03	988	932	4.423438E+03	303
26	6.309596275579E+08	7	0	16	209	543	4126	2245	4.084502E+03	4.085886E+03	4.090739E+03	4.086670E+03	947	894	4.242860E+03	291

Data analysis: Chandra threads

https://cxc.cfa.harvard.edu/ciao/threads/

Science Threads

WHAT'S NEW | WATCH OUT

Top | All | Intro | Data Prep | Imag | Imag Spec | Grating | Timing | psf | TTT || Sherpa | Proposal | PSF Central

<u>All threads</u>

A list of all the threads on one page.

Introduction NEW (UPDATED)

Beginners should start here. The Introductory threads provide an overview of the main components (GUI applications, parameter files) and concepts (the Data Model, filtering) in the CIAO data analysis software

Data Preparation UPDATED

When Chandra data goes through Standard Data Processing (SDP), the most recently available calibration is applied to it. Since this calibration is continuously being improved, one should check whether there are are made during SDP; every user has the option to reprocess the data with different parameters.

Imaging_NEW UPDATED

The Imaging threads cover a wide range of topics that include source detection, creating exposure maps and normalized images, and calculating image statistics. How to create color images for publication is add observations.

Imaging Spectroscopy

After extracting source and background PI or PHA spectra from an imaging observation, the appropriate response files (<u>ARF</u>, <u>RMF</u>) are created so that the data may be modeled and fit. In the case of multiple or ex the spectral analysis.

Grating Spectroscopy

If new calibration has been applied to the event file, the grating spectrum should be re-extracted as well. It is then possible to build grating response files (gARF, gRMF) in order to model and fit the data.

Timing Analysis

In order to perform absolute timing analysis on a dataset, a barycenter correction must first be applied to the data. One may then create lightcurves and phase-binned spectra to look for variability in the source. T data taken in the ACIS continuous clocking (CC) mode.

PSF Simulations

Data analysis: main data parameter evaluation

Preliminary checks on some useful data-related parameters

- punlearn dmkeypar
- dmkeypar 20908/primary/*evt2* EXPOSURE echo+
- dmkeypar 20908/primary/*evt2* DATAMODE echo+
- dmkeypar 20908/primary/*evt2* DETNAM echo+
- dmkeypar 20908/primary/*evt2* NROWS echo+
- dmkeypar 20908/primary/*evt2* EXPTIME echo+

\rightarrow OUTPUTS

/Users/chris> dmkeypar 20908/primary/*evt2* EXPOSURE echo+ 27225.700092981

/Users/chris> dmkeypar 20908/primary/*evt2* DATAMODE echo+ VFAINT

/Users/chris> dmkeypar 20908/primary/*evt2* DETNAM echo+ ACIS-5678

/Users/chris> dmkeypar 20908/primary/*evt2* NROWS echo+ 128

/Users/chris> dmkeypar 20908/primary/*evt2* EXPTIME echo+ 0.6 Reset the dmkeypar file ObsID nominal exposure Data mode (faint/vfaint) Detector in use # rows read in the det. CCD readout time

- → T=27.23 ks
- → VFAINT mode
- → ACIS-S in use (ccd=7 t the aimpoint)
- → 128 rows/1024 → 1/8 subarray used in case of bright sources to limit pileup → frame time ~3.2s (standard)/8 (0.6s here)

Data analysis: data reprocessing. I

Data analysis: data reprocessing. II

chandra_repro task

• punlearn chandra_repro

- comprehensive of many different tasks
- chandra_repro indir=20908 outdir=20908_new verbose=3 check_vf_pha=yes

In case of faint data-mode data, check_vf_pha=no; in case of VFAINT: check_vf_pha=yes

To list all of the options in the parameter file:

• plist chandra_repro

Parameters for /Users/chris/cxcds_param4/chandra_repro.par

indir = ./Input directory outdir = Output directory (default = \$indir/repro) Root for output filenames (root =)(badpixel = yes)Create a new bad pixel file? $(process_events = yes)$ Create a new level=2 event file? (destreak = yes)Destreak the ACIS-8 chip? (set_ardlib = yes) Set ardlib.par with the bad pixel file? $(check_vf_pha = no)$ Clean ACIS background in VFAINT data? Pixel randomization: default edser none randomize $(pix_adj = default)$ Re-run tgdetect and tg_create_mask rather than use the Level 2 region extension? $(recreate_ta_mask = no)$ $(asol_update = yes)$ If necessary, apply boresight correction to aspect solution file? Cleanup intermediate files on exit (cleanup = yes)(clobber = no)Clobber existing file (verbose = 1)Debug Level(0-5) (mode = ql)

Data analysis: filtering

Newly reprocessed files

pcadf20908_000N001_asol1.fits acisf20908_000N002_fov1.fits acisf20908_000N002_bpix1.fits acisf20908_000N002_stat1.fits acisf20908_000N002_mtl1.fits acisf20908_000N002_msk1.fits acisf630959617N002_pbk0.fits acisf20908_asol1.lis acisf20908_repro_bpix1.fits acisf20908_repro_flt2.fits acisf20908_repro_evt2.fits acisf20908_repro_fov1.fits

New ('reprocessed') event file (no selection of the energy band)

Include only 'good' data (based on grades and status) and select the energy range where Chandra is mostly sensible (keep in mind the effective area; here: 300–7000 eV)

- punlearn dmcopy
- dmcopy "20908_new/acisf20908_repro_evt2.fits[EVENTS]
 [grade=0,2,3,4,6,status=0,energy=300:7000]" 20908_new/obs20908_037keV_repro_evt2.fits

in one line

Alternatively, you can use the *pset command*:

- punlearn dmcopy
- pset dmcopy infile="20908_new/acisf20908_repro_evt2.fits[grade=0,2,3,4,6,status=0,energy=300:7000]"
- pset dmcopy outfile=20908_new/obs20908_037keV_repro_evt2.fits
- pset dmcopy

Data analysis: images in different bands

obs20908_037keV_repro_evt2.fits

ObsID band reprocessed evt2 file

The event file can be visualized as an image in ds9 If you need to use tasks requiring images (not event files), you may proceed in producing them (e.g., in different energy bands to enhance the contrast between different components – nucleus vs. extended emission – and with different binning)

Here the original pixel size is preserved: 1 pix=0.492" – Note: huge files!)

- cd 20908_new/
- punlearn dmcopy
- dmcopy "obs20908_037keV_repro_evt2.fits[bin X=1,Y=1][energy=500:7000]" 3c111_057keV_ima_bin1.fits
- dmcopy "obs20908_037keV_repro_evt2.fits[bin X=1,Y=1][energy=500:2000]" 3c111_052keV_ima_bin1.fits
- dmcopy "obs20908_037keV_repro_evt2.fits[bin X=1,Y=1][energy=2000:7000]" 3c111_27keV_ima_bin1.fits

Use appropriate names for your products (e.g., clearly indicating the energy band, whether it is either an image or an event file, etc.)

Data analysis: image visualization

ds9 will open the event file as it were an ds9 obs20908_037keV_repro_evt2.fits.gz & • image (i.e., using the X,Y info) ds9 3c111 052keV_ima_bin1.fits & ds9 will open the images produced in two ds9 3c111 27keV ima bin1.fits & different energy ranges ds9 3c111_052keV_ima_bin1.fits 3c111_27keV_ima_bin1.fits & two images at the • same time soft image + region file ds9 3c111_052keV_ima_bin1.fits -region 3c111_r4.reg & with source position possible uses of ds9 Region file \rightarrow ascii file with indication of the source position [here two examples: fk5]

Region file → ascii file with indication of the source position [here two examples: fk5 coordinates and physical (i.e., detector related) coordinates in CIAO format] Name also the region files properly (e.g., _r4: R_{circle}=4")

```
3c111_r4.reg:
fk5;circle(4:18:21.2767,+38:01:35.685,4.0")
3c111_r4_phys.reg:
circle(4090.2,4086.2,8.13)
```


Data analysis: pileup. I

http://cxc.harvard.edu/ciao/download/doc/pileup_abc.pdf

Two or more photon are collected during the same read-out in the same pixel, and are read as a single event (with higher energy)

 \rightarrow loss of information from these events

→ distortion in the observed spectrum (hardening, i.e., 'more' photons in the hard band) In extreme case: a "hole" at the center of the bright emitting source

Readout streak: the streak photons are clocked out in the wrong row, hence they are assigned the incorrect CHIPY value

Data analysis: pileup. II

EFFECTS OF PILEUP

ENERGY MIGRATION photon energies sum to create a detected event with higher energy GRADE MIGRATION event grades migrate towards values inconsistent with real photon events

→ net decrease of the observed count rate

→ net decrease in the fractional rms variability of the lightcurve

The spectral shape of the source results to be distorted

Avoid/limit pileup: (a) fasten the reading of the CCD (using the subarray option) (b) extract the spectrum from an annulus centered on the source (hence removing the "inner part" of the source) Pileup mitigation: use an XSPEC – pileup model

Data analysis: source photon statistics. I

ds9 3c111_057keV_ima_bin1.fits.gz -region 3c111_r4.reg &

X SAOImage ds Scale Color Region WCS	Analysis	If funtoc	ols are installed in ds9:
_repro_evt2.fits[EVENTS]	Pixel Table Name Resolution	Analysis	$s \rightarrow$ Funtools \rightarrow Counts in region
	Mask Parameters Graph Parameters Crossbair Parameters		
•	Contours	File Edit Font	X Counts in Regions (any regions; options: none)
fit zoom scale	Contour Parameters	# area: # surf_bri:	arcsec**2 cnts/arcsec**2
	Coordinate Grid Coordinate Grid Parameters	<pre># surf_err: # background-su regpet_coup</pre>	cnts/arcsec**2 btracted results ts error background berror area surf bri surf err
	Block > Block Parameters	1 20458.0	00 143.031 0.000 0.000 49.62 412.268 2.882
	Smooth Smooth Parameters	<pre># source_region # physical;circ</pre>	(5): le(4090.2498,4086.2493,8.1300813)
	Image Servers>Archives>Catalogs>Footprint Servers>	# source data reg coun 	ts pixels
\bigcirc	Catalog Tool Plot Tool		
	Virtual Observatory Web Browser	Funtools Overview Radial Profile Plot (annulus regions; options: none)	
	Analysis Command Log	Histogram Plot (any column options: column name, number of bins) Light Curve Plot ("time" column; options: number of bins)	Counts(0.5-7 keV)=20458
	Load Analysis Commands Clear Analysis Commands	Energy Spectrum Plot ("">i" column; options: none) Counts in Regions (any regions; options: none) Renne Positions for binary rables (options: mter, tol, display, filtertype) Column Histogram (any column; options: colname, <min:max:>bins)</min:max:>	Area=205 pix Exposure=27.23ks
0.25 0.25		Image histogram (options: <min:max:>bins)</min:max:>	UK-U.13 C/S

Data analysis: source photon statistics. II

Alternatively, using CIAO tools:

 dmstat "3c111_057keV_ima_bin1.fits[sky=circle(4:18:21.2767,+38:01:35.68,0.067')]" centroid=no

Values are very close to the previous ones

Data analysis: pileup. III

https://cxc.harvard.edu/toolkit/pimms.jsp

Use pimms/webpimms to convert fluxes into count rates and viceversa. In this case we use it to estimate the pileup fraction in our Chandra observation

Input values

- Cycle 20 observation
- Instr: ACIS-S
- Band=0.5-7 keV
- CR=0.75 cps
- Model: powerlaw with Γ=1.8 (assumption)
- $N_{H,Gal}$ =2.85 × 10²¹ cm⁻²
- Frame Time=0.6s (as previously determined due to subarray configuration, instead of the nominal 3.2s)

Output value

Pileup fraction=11%

PIMMS v4.11a: with ACIS Pile up and Background Count Estimation

Input	Output
• Count Rate	• Count Rate
Mission:Detector/Grating/Filter:CHANDRA-Cycle 20 \$ACIS-S/None/None \$	Mission:Detector/Grating/Filter:CHANDRA-Cycle 20 \$ACIS-S/None/None \$
Input Energy: 0.5 to 7 keV	Output Energy: 0.5 to 7
Model:Galactic NH:Redshift()Power Law2.5e21cm**-2	z): Redshifted NH:Photon Index:Count Rate:1.80.5cm**-2N=AE**-acts/s
Frame Time: Specify \$ 0.6	
CALCULATE	CLEAR HELP
PIMMS Prediction: <u>Pileup:</u> <u>Predicted</u>	piled count rate: Background Count Rate:
5.000E-01 11 2.378E-1	3.964E-1 2.4E-5
cts/sec count rate % cts/fram	ne cts/sec cts/sec

Data analysis: removing the readout streak. I

Most of the Chandra observations are already good enough to be used without further work. This set of instructions are to be adopted in case of bright sources to remove the readout streak

- 1. Get the exact source location from dmstat
- 2. Create a background spectrum (ciao, physical coordinates)
- 3. Correct for a bug in **acisreadcorr** in case of observations with subarrays (as in this example)
- Run acisreadcorr and define the dx,dy size of the region to be cleaned dx: width in pixels of the region to be cleaned dy: number of rows to be avoided around a source; it can be estimated by drawing a circle in ds9 and finding its diameter

These dx,dy values determine the width of the region to be cleaned and how close to get to the source, respectively

Data analysis: removing the readout streak. II

Step 1

- punlearn dmstat
- dmstat "obs20908_037keV_repro_evt2.fits[sky=circle(4090.2,4086.2,20)][bin sky=1]" centroid+ sig- med-

EVENTS_IMAGE(x,	y)							
min:	0		@:	(4086.	7 4	1066.7)
max:	6831		@:	(4090.	7 4	1086.7)
<pre>cntrd[log] :</pre>	(20.9	90937974	9 20.9	210296	08)			
<pre>cntrd[phys]:</pre>	(409)	0.609379	7 4086	.621029	96)			
good:	1264	Controi			6 108	a a	3	
null:	336	Centrol	u (X , I)	-(4030	.0,400	0.0)	

R=20 pixel to have a proper estimate of the source centroid

Data analysis: removing the readout streak. III

Step 2

- punlearn dmextract
- pset dmextract infile="obs20908_037keV_repro_evt2.fits[sky=region(bkg.reg)][bin pi=1:1024:1]"
- pset dmextract outfile=bkg_pi.fits Background file
- dmextract verbose=3

Step 3 [needed because BACKSCAL is not properly computed in the background spectrum in case of subarray observations]

- dmkeypar bkg_pi.fits BACKSCAL echo+
- → 4.2132040682894e-5

To be multiplied by 8 (subarray is 1/8 of the original CCD size in this example) \rightarrow BACKSCAL=0.0003371

- dmhedit infile=bkg_pi.fits filelist="" operation=add key=BACKSCAL value=0.0003371 unit="[pixel]" comment="Fractional area"
- dmkeypar bkg_pi.fits BACKSCAL echo+
- → 0.0003371

Background BACKSCAL keyword properly corrected

Data analysis: removing the readout streak. IV

Step 4

- punlearn acisreadcorr
- pset acisreadcorr infile=obs20908_037keV_repro_evt2.fits
- pset acisreadcorr outfile=obs20908_037keV_repro_corr_evt2.fits
- pset acisreadcorr aspect=@acisf20908_asol1.lis
- pset acisreadcorr x=4090.6 y=4086.6
- pset acisreadcorr dx=5 dy=40
- pset acisreadcorr bkg=bkg_pi.fits
- acisreadcorr

evt2.fits Input file _corr_evt2.fits Output file Aspect solution X,Y of the centroid Size of the region to be cleaned

Background file

Data analysis: smoothing the image

Smoothing is used to enhance faint structures. It consists of substituting the value of each pixel by the value obtained by weighting the nearby pixels using a given function (e.g., a Gaussian)

ds9 \rightarrow Analysis \rightarrow Smoothing & Smooth Parameters

Data analysis: contours. I

Radio image with contours from ds9

Data analysis: contours. II

Load the e.g. radio contours on the X-ray image

ds9 obs20908_037keV_repro_corr_evt2.fits -contour load radio.ctr &

Alternatively

ds9 obs20908_037keV_repro_corr_evt2.fits & \rightarrow Analysis \rightarrow Contour Parameters \rightarrow File \rightarrow Open \rightarrow radio.ctr

Data analysis: selection of source and back regions

Source

- in case of pointlike emission, refer to the encircled energy fraction (EEF; see manuals) for the choice of the extraction region
- number of counts vs. signal-to-noise ratio 'compromise': for faint/weak sources, smaller extraction regions are usually preferred

Background

 close to the source and large enough to adequately 'sample' the local level of background

Data analysis: timing. I

Creare a background-subtracted light curve

- Source region → source_r6.reg circle(4091.1,4085.9,12.2)
- Background region → bkg.reg circle(4148.6,4012.5,30)
- punlearn dmextract
- pset dmextract infile="obs20908_037keV_repro_corr_evt2.fits[sky=region(source_r6.reg)][bin time=::500]") MIN:MAX:BIN → Binning=500 s (depending on the flux of the source)
- pset dmextract outfile="3c311_src_lc.fits"
- pset dmextract bkg="obs20908_037keV_repro_corr_evt2.fits[sky=region(bkg.reg)]"
- pset dmextract opt="ltc1"
- dmextract
- [...]

To visualize the columns of the output lightcurve file:

dmlist 3c311_src_lc.fits cols

Data analysis: timing. II

Visualization of the source lightcurve. Method I with python and sherpa (CIAO package)

- sherpa
- from pycrates import read_file
- import matplotlib.pylab as plt
- tab = read_file("3c311_src_lc.fits")
- dt = tab.get_column("dt").values
- rate = tab.get_column("net_rate").values
- erate = tab.get_column("err_rate").values
- plt.errorbar(dt, rate, yerr=erate, marker="o", color="red", mfc="black",mec="black", ecolor="grey")
- plt.xlabel("\$\Delta\$ T (sec)")
- plt.ylabel("Net Count Rate (counts/sec)")
- plt.title("3c111 light curve")

Sherpa: Chandra package

Source lightcurve

Data analysis: timing. III

Visualization of the source lightcurve. Method II with the FTOOL package **Icurve**

Icurve

lcurve 1.0 (xronos6.0)

Type INDEF to accept the default value

Number of time series for this task[1] Ser. 1 filename +options (or @file of filenames +options)[file1] 3c311_src_lc.fits Series 1 file 1:3c311_src_lc.fits Selected FITS extensions: 1 - RATE TABLE; Source 3C 111 Start Time (d) 18116 18:16:39.741 FITS Extension 1 - `LIGHTCURVE` Stop Time (d) 18117 02:52:51.142 No. of Rows 62 Bin Time (s) 500.0 Right Ascension ... 6.4587556654073E Internal time sys.. Converted to TJD Declination 3.8027986653567E Experiment CHANDRA ACIS Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes Selected Columns: 3- Time; 5- Y-axis; 6- Y-error; File contains binned data. Name of the window file ('-' for default window)[-] Expected Start ... 18116.76157107257 (days) 18:16:39:741 (h:m:s:ms) Expected Stop 18117.12003637141 (days) 2:52:51:142 (h:m:s:ms) Minimum Newbin Time (s) 500.00000 for Maximum Newbin No.. 62 (s) (to have 1 Intv. of 62 Newbins) Default Newbin Time is: 500.00000 Type INDEF to accept the default value Newbin Time or negative rebinning[4.6692607009327] 500 (s) Newbin Time 500.00000 Maximum Newbin No. 62 Default Newbins per Interval are: 62 (giving 1 Interval of 62 Newbins)

Lightcurve previously produced using dmextract

Information contained in the lightcurve file, Bin time=500s (you may rebin within lcurve) \rightarrow 62 datapoints (=exposure/500s)

Default window

Newbin Time = 500 (as the original) \rightarrow 62 time bins

Data analysis: timing. IV

Number of Newbins/Interval[10] 62 Maximum of 1 Intvs. with Name of output file[default] 3c111_lc Do you want to plot your results?[yes] Enter PGPLOT device[/XW]	62 Newbins of	500.000	(s)	Name of the output file Plotting device: /xw
62 analysis results per interval				
100% completed				
Intv 1 Start 18116 18:20:49 Ser.1 Avg 0.6948 Chisq Min 0.000 Max PLT> r x 1500 31000 PLT> r y 0.6 0.9 PLT> pl PLT> fit PLTYou must define a model first. PLT> PLT> PLT> mo cons 1 CO: VAL(1.000), SIG(0.000	1348. Var 0.30 0.8400 expVar 0.13), PLO(0.000)	020E-01 Newbs. 90E-02 Bins , PHI(0.000	62 62)?	iplot environment: Rescale the X (time) axis to remove the first and last time bins if their behaviour is unusual Fit with a constant model ('constant' lightcurve, i.e., no variability)
PLT> fit Fitting group 2, from 1.500E+03 to Fitting 58 points in a band of 1.00000000 (-3) W-VAR= 29.64 (-4) W-VAR= 29.64 0.738529861 DIT: slot	0 3.100E+04 58.			
PLT> plot PLT> hard 3c111_lc_500s.ps/ps PLT> quit Writing output file: 3c111_lc.flc				Save the lightcurve in a PS file

Data analysis: timing. V

Is the source variable? Apply the χ^2 test

Binning is a compromise between the SNR of each time bin and the temporal resolution (higher SNR in each bin $\leftarrow \rightarrow$ lower number of temporal bins). It should be adjusted on the basis of the source photon statistics and the length of the observation.

To establish whether a source is variable during the observation, we can apply the χ^2 test

$$\chi_{\nu}^{2} = \frac{1}{\nu} \sum_{i=1}^{n} \frac{(c_{i} - \langle c \rangle)^{2}}{\sigma_{i}^{2}}$$

 C_i : observed number of counts in each temporal bin i (or count rate in each time interval) <C>: average number of counts over the entire observation σ_i : Poissonian error associated with the number of counts C_i

v=n-1: degrees of freedom (n=number of datapoints)

Compute the null-hypothesis probability that the source is not variable

Data analysis: spectral extraction

Four files are needed for X-ray spectral analysis and will be produced by **specextract**:

- Source spectrum
- Background spectrum
- Ancillary Response File (ARF)
- Redistribution Matrix File (RMF)
- punlearn specextract
- pset specextract infile="obs20908_037keV_repro_corr_evt2.fits[sky=region(source_r6.reg)]"
- pset specextract bkgfile="obs20908_037keV_repro_corr_evt2.fits[sky=region(bck.reg)]"
- pset specextract outroot=3c111_r6
- pset specextract asp=pcadf20908_000N001_asol1.fits
- pset specextract mskfile=acisf20908_000N002_msk1.fits
- pset specextract badpixfile=acisf20908_repro_bpix1.fits
- pset specextract weight=no → produces an ARF for a point-like source
- pset specextract <u>correct=yes</u> → energy-dependent point-source aperture correction (EEF)
- pset specextract verbose=2
 The opposite (weight=yes & correct=no) for extended src
- pset specextract grouptype=NONE
- pset specextract binspec=NONE
 Data can be rebinned either here or later using grppha
- specextract

Response matrices: RMF

RMF: links the instrumental channel scale with the physical energy (wavelength) scale

rile Eard	TUUIS			neip
	CHANNEL	E_MIN	E_MAX	
Select	1E	1E	1E	
All	channel	keV	keV	
Invert	Modify	Modify	Modify	
1	1.000000E+00	1.460000E-03	1.460000E-02	ΠA
2	2.000000E+00	1.460000E-02	2.920000E-02	
3	3.000000E+00	2.920000E-02	4.380000E-02	
4	4.000000E+00	4.380000E-02	5.840000E-02	
5	5.000000E+00	5.840000E-02	7.300000E-02	
6	6.000000E+00	7.300000E-02	8.760000E-02	
7	7.000000E+00	8.760000E-02	1.022000E-01	
8	8.000000E+00	1.022000E-01	1.168000E-01	
9	9.000000E+00	1.168000E-01	1.314000E-01	
10	1.000000E+01	1.314000E-01	1.460000E-01	
11	1.100000E+01	1.460000E-01	1.606000E-01	
12	1.200000E+01	1.606000E-01	1.752000E-01	
13	1.300000E+01	1.752000E-01	1.898000E-01	
14	1.400000E+01	1.898000E-01	2.044000E-01	
15	1.500000E+01	2.044000E-01	2.190000E-01	
16	1.600000E+01	2.190000E-01	2.336000E-01	
17	1.700000E+01	2.336000E-01	2.482000E-01	
18	1.800000E+01	2.482000E-01	2.628000E-01	
19	1.900000E+01	2.628000E-01	2.774000E-01	
20	2.000000E+01	2.774000E-01	2.920000E-01	

Visualization of the RMF file using the **ftool fv**

Response matrices: ARF

ARF: indicates the effective response (hence sensitivity) of the mirrors+instrument at a given source position on the detector

🗙 fv: Bir	ary Table of ft	m0830p3759.ai	f[1] in /ho 😑	□ ×			
File Edit	Tools			Help			
	ENERG_LO	ENERG_HI	SPECRESP				
Select	1E	1E	1E				
All	keV	keV	cm**2				
Invert	Modify	Modify	Modify				
1	2.200000E-01	2.300000E-01	9.414584E+01	ΠA			
2	2.300000E-01	2.400000E-01	1.119709E+02				
3	2.400000E-01	2.500000E-01	1.309653E+02				
4	2.500000E-01	2.600000E-01	1.518642E+02				
5	2.600000E-01	2.700000E-01	1.716482E+02				
6	2.700000E-01	2.800000E-01	1.922011E+02				
7	2.800000E-01	2.900000E-01	4.741680E+01				
8	2.90000E-01	3.000000E-01	2.284590E+00				
9	3.000000E-01	3.100000E-01	5.144246E+00				
10	3.100000E-01	3.200000E-01	1.563580E+01				
11	3.200000E-01	3.300000E-01	2.251595E+01				
12	3.300000E-01	3.400000E-01	3.011008E+01				
13	3.400000E-01	3.500000E-01	3.743014E+01				
14	3.500000E-01	3.600000E-01	4.385400E+01				
15	3.600000E-01	3.700000E-01	4.954287E+01				
16	3.700000E-01	3.800000E-01	5.625348E+01				
17	3.800000E-01	3.900000E-01	6.431229E+01				
18	3.900000E-01	4.000000E-01	7.319862E+01				
19	4.000000E-01	4.100000E-01	7.713167E+01				
20	4.100000E-01	4.200000E-01	8.444775E+01				
Go to: Edit cell: 0.42							

