Tango 9 developments

September 17, 2012

1 Introduction

Following the two previous Tango executive committee meetings (May 2011 at Elettra and April
2012 at MaxIV), the list of new main features for Tango 9 is:

1. Tango pipe(s)
2. Enumeration as attribute data type
3. Forwarded attribute

Point 1 (Tango pipe) is the evolution of what was previously named "Structure as attribute data
type".

This paper is a proposal of how these features could be implemented from the user point of view.
Nevertheless, the work is not done yet and it is highly possible that the real implementation will
not be exactly what is reported in this paper but the general idea is there.

Tango 9 will also implement (at last) some of Feature Request registered in the Tango-cs
SourceForge project. From the user point of view, the most noticeable one is the introduction on
the server side of a MyTangoClass::write _attr _hardware() method.

All the code snippets given in this paper are pseudo-code and are not intended to be compiled
as is.

2 Tango pipe(s)

2.1 Motivation

Since several Tango meetings, we are talking of structure supported as attribute data type. It
appears that the static definition of a structure prevents some key usage of this new feature. The
requirement is to be able to send/receive a set of data to/from a Tango device but with variable
data type. Classical use case is the camera interfaces on synchrotron beam-line where you want
to transfer images coded in different data format (8, 16 or 32 bits per pixel). For beam line X ray
position monitor, it is also convenient to be able to transfer the data coming from the hardware
sometimes as float numbers, sometimes as double numbers. The case of scan data is also to be
considered. You need to transfer data from a variable set of actuators (from different data type)
and a variable set of sensors with also a different data type set. Variable data type does not fit
into the Tango attribute model. Therefore, the proposal is to add new entities to Tango devices:
Tango device pipe(s).

2.2 Definition

On top of commands and attributes, a Tango device can also have pipes. A Tango pipe is a third
way to exchange data between a Tango client and a Tango device. The pipe transports a blob of
data. Each blob is a set of data elements. Each data element has:

1. A name
2. Is a Tango basic type (or array thereof)

Using a pipe, you can send and/or receive data to/from a Tango device. From the device point of
view, a Tango pipe

e received some data from the client. The definition of what the pipe receives is static. It’s a
fixed number of data element with fixed names and data type.

e send data to the client. The definition of what the pipe returns is dynamic. It’s a variable
set of data elements (variable names and data type)

Each pipe has:
1. A name unique for the device
2. A label and a description statically defined

3. A description which allows a client to retrieve the pipe input data definition (How many
data elements, their names and data type) plus its label and description

Accessing a pipe is protected by a state machine (is_xxx_allowed() method). Compared to
command or attributes, a pipe has a limited set of features:

e No polling (therefore no local history)

e No alarm

No quality factor

No change/periodic/archive event on a pipe

Not accessible through a Tango group
e There is no dynamic pipe (in a sense like dynamic attribute)

For the TAC and device locking point of view, a device pipe is handled the same way command is.
By default all device pipes are considered as WRITE except those defined as READ in the TAC
configuration (definition at Tango device class level). Accessing a pipe is:

e Synchronous. You write data to a device pipe and you wait for its answer

e Event based. The application registers to the pipe. One application callback is executed
when the device push data into the pipe

2.3 Server side usage

On the server side, in the Tango class (ie PowerSupply), there is one method for each device pipe
(in the PowerSupply class). The name of this method is the pipe name. The library creates one
instance of a Tango kernel Pipe class for each device pipe. The right instance is passed to the
method when the client uses the pipe

class PowerSupply:public Tango::Device_5Impl

{
void MyFirstPipe(Tango: :Pipe &); // For the device pipe named MyFirstPipe
void MySecondPipe(Tango::Pipe &); // For the device pipe named MySecondPipe
bool is_MyFirstPipe_allowed(Tango::Pipe &); // For dev pipe named MyFirstPipe
bool is_MySecondPipe_allowed(Tango::Pipe &); // For dev pipe named MySecondPipe
s

2.3.1

Sending data to the pipe

In our example, the Tango class send two kind of data using the same pipe. The first time the
pipe is read by the client, the pipe blob is a set of 2 elements. Following client read return a pipe
blob with a set of five elements. Data returned during the first read are arrays and therefore uses
some Tango Pipe memory management issue (similar to what we already use for attribute). In
the device instance, we have following data members

class PowerSupply:public Tango::Device_5Impl

{

};

void MyFirstPipe(Tango: :Pipe &) ;

vector<short>
int

short

int

double

double

short

v_s;
*1_ptr;

s_val_1;

i_val;

db_val_
db_val_

13
2;

s_val_2;

The implementation of the PowerSupply::MyFirstPipe method looks like:

void Powersupply: :MyFirstPipe(Tango: :Pipe &pi)

{

vector<string> pipe_names;

v_s.push_back(111)
v_s.push_back(222)

i_ptr = new int[2]
i_ptr[0] = 66;
i_ptr[1] = 77;

s_val_1 = 10;
i_val = 22;
db_val_1 = 2.2;
db_val_2 = 3.3;
s_val_2 = 33;

if (first_call ==
{

; //
; //

5 //
//
//

//
//
//
//
//

true)

Init sent data
Init sent data

Allocate memory for the sent buffer

Init
Init

data
data

sent
sent

data
data
data
data
data

Init
Init
Init
Init
Init

sent
sent
sent
sent
sent

pipe_names.push_back(string("Short_data_elt"));
pipe_names.push_back(string("Int_allocated_elt"));

pi.set_pipe_blob_elt_length(0,v_s.size());
pi.set_pipe_blob_elt_length(1,2);

pi.set_pipe_blob_elt_release(1l,true);

// Ask Tango to free allocated mem

pi.set_value(pipe_names,&(v_s[0]),i_ptr); // Send blob with 2 elts

else

pipe_names = {"one","two","three","four","five"};
pi.set_value(pipe_names,&s_val_1,&i_val,&db_val_1,&db_val_2,&s_val_2);

}

User data are associated with the Tango pipe using the Pipe::set_value() method used 2 times in
the example above. The same method is used whatever the number of data element in the blob
which has to be sent using the pipe. The Tango kernel class Pipe has two methods allowing the
user to send arrays as blob data element. Those methods are:

e void Pipe::set_pipe_blob_elt length(int elt_nb, int size)
e void Pipe::set_pipe_blob_elt release(int elt_nb, bool release)

If required, these methods has to be called before the blob is sent to the pipe.

2.3.2 Retrieving data from the pipe

To retrieve data from the pipe, the user method looks like

void Powersupply::MyFirstPipe(Tango: :Pipe &pi)

{
float fl_w;
short sh_w;
double db_w;
vector<string> pipe_names;
pi.get_write_value(pipe_names,fl_w,sh_w,db_w);
}

User retrieve data sent to a pipe with the method Pipe::get write_value() which is used once in
our example to retrieve three data elements from the pipe: A float followed by a short and finally
one double. This method accept any number of arguments on top of the reference to a string
vector to retrieve the data elements name.

2.3.3 Pushing data to the pipe

In a similar way of the Pipe::set value(), a DeviceImpl::push_ pipe_event() method will be avail-
able.

DeviceImpl: :push_pipe_event(string &pipe_name,vector<string> &blob_elt_names,T *val, Args ..

2.4 Client side usage
2.4.1 Using a pipe synchronously
Basic call Sending/Retrieving data to/from a pipe is done with the DeviceProxy method

pipe_inout()
DevicePipe DeviceProxy::pipe_inout(string &pipe_name,DevicePipe &sent_blob);

To create a blob in order to send it to a pipe, use the Tango kernel DevicePipe class. Extracting
data from a received blob is also possible using the Tango kernel DevicePipe class.

.ar

Creating a device pipe blob The following code snippet creates a pipe blob before send it to
the device

double db_arr[10];
short s;
long 1;

Tango: :DevicePipe sent_dp;

sent_dp.insert_data_elt("FirstElt",db_arr,10);
sent_dp.insert_data_elt("SecondElt",s);
sent_dp.insert_data_elt("ThirdElt",1);

dev.pipe_inout ("ThePipe",sent_dp);

Extracting data from a device pipe blob Within the Tango kernel DevicePipe class, there
are methods to:

e Retrieve the number of data elements in the blob

e Retrieve data element name(s)

e Retrieve data type for one element in a blob (by element name or number)

e Retrieve data for one element in a blob (by element name or number)

The following is some code to extract data coming from a pipe

Tango: :DevicePipe received_dp,sent_dp;
Tango: :DeviceProxy dev(...);

sent_dp.insert_data_elt(...);

received_dp = dev.pipe_inout("ThePipe",sent_dp);

size_t nb_elt = received_dp.get_data_elt_nb();
vector<string> elt_names = received_dp.get_data_elt_names();

for (size_t loop = 0;loop < nb_elt;loop++)
{
int elt_type = received_dp.get_data_elt_type(loop);

short s_val;
double db_val;

switch (elt_type)

{

case DEV_SHORT:
received_dp.extract_data_elt(loop,s_val);
break;

case DEV_DOUBLE:
received_dp.extract_data_elt(loop,db_val);
break;

}

Methods DevicePipe::get data_ elt type() and DevicePipe::extract data_ elt() are also available
with the blob data element name as argument instead of the blob data element number.
2.4.2 Using a device pipe through event

To receive data sent to a pipe using event, one application has to subscribe to the pipe event. This
is done with the already existing DeviceProxy::subscribe event() call.

int DeviceProxy::subscribe_event(const string &p_name,EventType event,CallBack *cb);

To register to a pipe event, the new value Tango::PIPE_EVENT has to be used for the call
event parameter. Event queue will also be supported for this kind of event attached to Tango
device pipe(s). In the Tango::CallBack class, a new push event() method will be added. This
new method receives one instance of a PipeBlobData class.

void Callback::push_event (PipeBlobData *event);

struct Tango::PipeBlobData

{
Tango: :DeviceProxy *dev;
string pipe_name;
Tango: :DevicePipe pipe_blob;
bool err;
Tango: :DevErrorList errors;

s

Extraction of the pipe blob data element is similar to the synchronous call.

2.4.3 Getting device pipe description

The DeviceProxy class DeviceProxy::pipe_list query() method allows one application to retrieve
device pipe description.

struct BlobDataEltInfo

{
string name;
int data_type;
vector<string> extensions;
s

typedef BlobInfo vector<BlobDataEltInfo>;

struct Pipelnfo

{
string pipe_name;
string description;
string label;
BlobInfo blob_info;
string in_blob_desc;
string out_blob_desc;
vector<string> extensions;
DispLevel disp_level;

};
typedef PipeInfolist vector<Pipelnfo>;

PipeInfolist *DeviceProxy::pipe_list_query();

2.5 Implementation

Some more details on a possible implementation are available at Tango kernel wiki. It appears that
in many ways the implementation is similar to what we already have for commands. Therefore, at a
glance, implementing Tango device pipes is less work for the Tango kernel team than implementing
structure as attribute data type.

3 Enumeration as attribute data type

3.1 Motivation

Many parameters in the hardware we have to control have a limited set of value with a string
describing each of the possible value (Hardware mode, instrument scale,...). It’s so common that
several client layers have developed their own way to deal with this kind of parameters. Computing
enumeration fits well with kind of data. Up to this proposal, it was not possible to define an
enumeration as data type for a Tango attribute.

3.2 Definition

A Tango attribute enumeration has consecutive values always starting with 0. Enumeration
labels are transferred within the attribute configuration. It’s possible to change the enumeration
labels (not the value) through the classical way of changing attribute configuration. Thus enumer-
ation labels are re-definable at device or class level through the Tango database. It’s not supported
to add or delete new enumeration value (and label) at run time.

3.3 Server side usage
Let’s suppose that we have a Fruit and Beverage enumerations

enum class _Beverage

{
BEER = 0,
VINE,
WATER,
NB_VALUE
};

typedef _Beverage Beverage;

enum class _Fruit

{
BANANA = 0,
APPLE,
PEAR,
NB_VALUE

};

typedef _Fruit Fruit;

In a Tango class named Meal , we have a beverage (data type Beverage) and fruit (data type
Fruit) attribute. In the Meal class, we have data members for each attribute

http://sourceforge.net/apps/mediawiki/tango-cs/index.php?title=Tango_device_pipe

class Meal:Tango::Device_5Impl

{

Beverage bev;
Fruit fr;

};
The Tango class developer code executed when a client read an attribute of enumeration data

type look like

Meal: :read_beverage(Tango: :Attribute &att)

{
bev = Beverage: :BEER;
att.set_value(&bev);
}
Meal::read_fruit(Tango::Attribute &att)
{
fr = Fruit::PEAR;
att.set_value(&fr);
}

The Tango class developer code executed when a client write the enumerated attributes look like

Meal::write_beverage(Tango: :WAttribute &att)

{
Beverage tmp_bev;
att.get_write_value(tmp_bev);
}
Meal: :write_fruit(Tango: :WAttribute &att)
{
Fruit tmp_fr;
att.get_write_value(tmp_fr);
}

3.4 Client side usage
3.4.1 Reading an enumerated attribute

With enumeration compile time knowledge In case of a specific application, the developer is
able to declare (with the help of the Tango class documentation) the enumeration in the application
code. Then, reading the attribute is similar to any other attribute reading

enum class _Beverage

{
BEER = 0,
VINE,
WATER,
NB_VALUE
};

typedef _Beverage Beverage;

Tango: :DeviceAttribute da = the_dinner.read_attribute("beverage");

Beverage bev;
da >> bev;

Note that in both server and client, the enumeration are C++ 11 "Strongly typed enum". This
allows to have a NB_ VALUE for each enumeration. This is used by the library to do some basic
check on the enumeration value received from the device.

Generic case The Tango::DeviceAttribute class will be modified to add two methods to extract
enumerated attribute as a number or as a string

e DeviceAttribute::extract_enum_ value(int &val_nb);
e DeviceAttribute::extract_enum_value(string Eval _str);

The application code looks like

DeviceAttribute da = the_dinner.read_attribute("beverage");

string enum_val;
da.extract_enum_value(enum_val);

cout << "My favorite beverage for dinner is " << enum_val << endl;

3.4.2 Writing an enumerated attribute

With enumeration compile time knowledge Once the enumeration is declared in the ap-
plication code, the code is similar to all other attribute data type

Fruit £ = Fruit::APPLE;

DeviceAttribute da;
da.set_name("fruit");

da << f;
the_dinner.write_attribute(da);

Generic case In a way similar to the reading case, the Tango::DeviceAttribute class will be
modified to add two methods to insert enumerated attribute from a number or from a string

e DeviceAttribute::insert_enum_ value(int Eval_nb);
e DeviceAttribute::insert_enum_ value(string €val_str);

The application code looks like

int enum_val = ...;

DeviceAttribute da;
da.set_name("fruit");

da.insert_enum_value(enum_val) ;
the_dinner.write_attribute(da);

3.5 Implementation

On the client side, it is based on a library maintained cache of enumerated attribute name -
attribute configuration (including enumeration labels). This cache will be filled in at the first
enumerated attribute read/write request and re-initialized after device re-connection. This cache
also need to be updated if a user changes the enumeration labels (using set attribute config).
This will be done on the server side by de-registering the Tango device from the CORBA POA
and then re-registering it. This will force a client re-connection and then a cache update. On the
server side, it is based on template method usage with a template definition of the data type used
by the attribute (something already used in Tango since its release 8). Some more details on a
possible implementation are available at Tango kernel wiki.

4 Forwarded attribute

4.1 Motivation

When writing Tango class for a high level equipment (Linac, RF transmitter,...), it is common to
report on the high level device some attribute(s) coming from low level device(s). This force the
high level class developer to code the attribute in a way it forwards all its read (and write) request
to the low level device attribute. This also means that the high level device attribute has to be
configured in a nearly similar way than the low level device attribute is configured. The aim of the
new feature proposed here is to automate these actions in order to provide "forwarded attribute".

4.2 Definition

A forwarded attribute is one attribute which forwards:
e its read/write requests
e its configuration
e its polling
e its events subscription

to another attribute. This root attribute can be in the same Tango class, in the same device server
process or elsewhere in the control system or even in another Tango control system. Because they
share the same configuration (nearly), a forwarded attribute has the same data type, data format,
R/W type than its root attribute. In the Tango class, no code is required for a forwarded
attribute. Everything is done in the library. A forwarded attribute is either a static or a dynamic
attribute.

4.2.1 Forwarded attribute association
There are two ways to define the association between the forwarded and the root attribute:

e Using a device property (something like local att name: root att name) when the for-
warded attribute is a dynamic attribute. In this case the root attribute name has to be the
FQAN (Fully Qualified Attribute Name).

e In code if it’s possible to have at compile time knowledge of the root attribute device name

One of the two ways has to be used. If the property is used, it has the highest priority.

10

http://sourceforge.net/apps/mediawiki/tango-cs/index.php?title=Enumerated_attribute

4.3 Forwarded attribute configuration

e A subset of the attribute configuration stays local to the attribute (label - description).
All the other parameters are forwarded to the root attribute.

e Because the get attribute config() and set attribute config() calls are forwarded to the
root attribute, if a user change the root attribute config, the forwarded attribute config-
uration will also be seen modified. For attribute change event, see chapter on forwarded
attribute events.

e A new field has to be added into the attribute configuration for all attribute:
string root _attribute name

It’s an empty string for classical attribute and it is set to the root attribute fully qualified
name in case of forwarded attribute

4.4 Forwarded attribute polling

Like all other features, it is forwarded to the root attribute. Start polling the forwarded attributes
means start polling the root attribute. The DS admin device (used for all polling related com-
mands) knows that the attribute is a forwarded one and forwards the request to the root attribute.
Same idea for polling status, the DS admin device requires polling status for the root attributes
of all device forwarded attributes and change their name accordingly before returning the info to
the caller.

4.5 Forwarded attribute events

Like attribute configuration and polling, everything is forwarded to the root attribute. Changing
the event definition on the forwarded attribute means changing it in the root attribute. When a
user register to an event from a forwarded attribute, the library subscribes to the event on the
root attribute. The root attribute name is returned to the client part of the library by the DS
admin device event subscription command. When the event is received, the library simply change
the attribute name before calling the user callback.

5 MyTangoClass::write attr hardware()

5.1 Motivation/Definition

On the server side, the user method execution sequencing will be modified to add a "write attr hardware"
method. This is allows a better management of hardware which support writing several of their
parameters in one go. This also makes the Sequencing symetric between reading and writing
attributes

5.2 Reminder on read attributes sequencing

On the server side, when the user calls read attributes() on a Tango device, user methods se-
quencing is

/CALL/ always_executed_hook()
/CALL/ read_attr_hardware()

/FOR/ Each attribute to be read

/CALL/ is_xxx_allowed()
/IF/ previous call returns true

11

/CALL/ read_xxx()
/ENDIF/
/ENDFOR/

5.3 New write attributes sequencing

On the server side, when the user calls write_attributes() on a Tango device, user methods se-
quencing will be

/CALL/ always_executed_hook()

/FOR/ Each attribute to be written
/CALL/ is_xxx_allowed()
/IF/ previous call returns true
/CALL/ write_xxx()
/ENDIF/
/ENDFOR/

/CALL/ write_attr_hardware()

The precise declaration of the new method MyTangoClass::write attr hardware() is:
o virtual void MyTangoClass::write_ attr _hardware(vector<long> &attr_list)

This is a virtual method and the kernel provides a default implementation doing nothing.

5.4 Error management

Two possible cases:

1. The user code throws a Tango::DevFuailed exception during the execution of this method. In
this case, the Tango kernel assumes that the call fails for all attributes involved

2. The user code throws a Tango::NamedDevFuiled exception during the execution of this
method. Now, only the attribute(s) reported by the exception will be considered by the
kernel as faulty. The already existing NamedDevFailed class will be modified to be easily
generated and thrown by the user code (in a way similar to DevFailed).

12

	Introduction
	Tango pipe(s)
	Motivation
	Definition
	Server side usage
	Sending data to the pipe
	Retrieving data from the pipe
	Pushing data to the pipe

	Client side usage
	Using a pipe synchronously
	Using a device pipe through event
	Getting device pipe description

	Implementation

	Enumeration as attribute data type
	Motivation
	Definition
	Server side usage
	Client side usage
	Reading an enumerated attribute
	Writing an enumerated attribute

	Implementation

	Forwarded attribute
	Motivation
	Definition
	Forwarded attribute association

	Forwarded attribute configuration
	Forwarded attribute polling
	Forwarded attribute events

	MyTangoClass::write_attr_hardware()
	Motivation/Definition
	Reminder on read_attributes sequencing
	New write_attributes sequencing
	Error management

