
Introduction to Python III

Overview

OOP: classes and objects
Iterators and generators
Context managers
Decorators
Development process
The Python Package Index
IPython
Python scientific packages (just a
mention):
numpy

matplotlib

scipy

astropy, astroquery

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Introduction to Python III

Overview

OOP: classes and objects
Iterators and generators
Context managers
Decorators
Development process
The Python Package Index
IPython
Python scientific packages (just a
mention):
numpy

matplotlib

scipy

astropy, astroquery

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Object Oriented Programming -1
Introduction III - 2

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Object Oriented Programming -1
Introduction III - 2

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number

2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string

3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute

4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor

5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes

6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()

7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()

8 Note: in all methods the first argument (strictly
required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -1
Introduction III - 3

The class is the tool which allows a programmer
to define her/his own objects.

file: number.py
class Number:
"An example of class: Number()"
names=(’zero’,’one’,’two’,’three’,’four’,

’five’, ’six’,’seven’,’eight’,’nine’)

def __init__(self, n):
self.name=Number.names[n]
self.value=n

def lower(self):
return self.name

def upper(self):
return self.name.upper()

← 1
← 2
← 3

← 4,8
← 5

← 5
← 6,8

← 7,8

1 Definition of class Number
2 Class documentation string
3 names: class attribute
4 Special method init (): constructor
5 self.name, self.value: instance attributes
6 Method: lower()
7 Method: upper()
8 Note: in all methods the first argument (strictly

required) refers to the instance (it’s usually
named: self)

→
Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)
2 Using object’s attribute value
3 Calling object’s method upper()
4 Calling object’s method lower()
5 Note: when calling a method the first required

argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)
2 Using object’s attribute value
3 Calling object’s method upper()
4 Calling object’s method lower()
5 Note: when calling a method the first required

argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)

2 Using object’s attribute value
3 Calling object’s method upper()
4 Calling object’s method lower()
5 Note: when calling a method the first required

argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)
2 Using object’s attribute value

3 Calling object’s method upper()
4 Calling object’s method lower()
5 Note: when calling a method the first required

argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)
2 Using object’s attribute value
3 Calling object’s method upper()

4 Calling object’s method lower()
5 Note: when calling a method the first required

argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)
2 Using object’s attribute value
3 Calling object’s method upper()
4 Calling object’s method lower()

5 Note: when calling a method the first required
argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)
2 Using object’s attribute value
3 Calling object’s method upper()
4 Calling object’s method lower()
5 Note: when calling a method the first required

argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Classes and Objects -2
Introduction III - 4

How to use class Number:
>>> from number import Number
>>> a=Number(2)
>>> b=Number(3)
>>> a
<number.Number object at 0x7f9153a695f8>
>>> b
<number.Number object at 0x7f9153a695c0>
>>> a.value
2
>>> b.upper()
’THREE’
>>> a.lower()
’two’
>>>

← 1,5

← 2
← 3,5
← 4,5

1 Creating two instances (objects) of class
Number (equivalent to calling the init ()

method)
2 Using object’s attribute value
3 Calling object’s method upper()
4 Calling object’s method lower()
5 Note: when calling a method the first required

argument is implicit

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number
3 Implementation of a new method: plus
4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number
3 Implementation of a new method: plus
4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number
3 Implementation of a new method: plus
4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number
3 Implementation of a new method: plus
4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number

3 Implementation of a new method: plus
4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number
3 Implementation of a new method: plus

4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number
3 Implementation of a new method: plus
4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -1
Introduction III - 5

Proceeding further with the previous example:

file: numberplus.py
from number import Number

class NumberPlus(Number):
"Number with addition"
def plus(self, x):
return NumberPlus(self.value+x.value)

def upper(self):
return self.name.capitalize()

← 1, 2
← 3

← 4

1 Here we define a new class derived from
Number

2 NumberPlus is a sub-class of Number
3 Implementation of a new method: plus
4 Re-implementation (overload) of method:
upper()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus
2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus
2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus

2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus
2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus
2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus
2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus
2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Derived classes -2
Introduction III - 6

Let’s use the new class:
>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> print(a)
<numberext.NumberPlus object at 0x7fe17970dc88>
>>> print(b)
<numberext.NumberPlus object at 0x7fe17970dc50>
>>> c=a.plus(b)
>>> print(c)
<numberplus.NumberPlus object at 0x7ffa15698710>
>>> c.value
5
>>> c.upper()
’Five’
>>>

← 1

← 2

← 3
← 4

1 Creating two instances of class NumberPlus
2 The plus() method creates a new instance of
NumberPlus

3 Its value is the sum of the values of the two
objects.

4 The upper() method has been redefined.

N.B.: The class Number and its derivatives imple-
ment very little of integer arithmetic!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -1
Introduction III - 7

Python applies the duck typing principle:

If it walks like a duck and it quacks like a
duck, then it must be a duck

E.g.: an object is (compatible with) an
integer if provides all the methods which
are specific of integers.

>>> from numberplus import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(3)
>>> a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: ’NumberPlus’ and ’NumberPlus’
>>>

←
1

Our NumberPlus class
doesn’t add like an inte-
ger

Let’s look into an object of type integer:

>>> a = 1
>>> dir(a)
[’__abs__’, ’__add__’, ’__and__’, ’__bool__’, ’__ceil__’, ’__class__’,
’__delattr__’, ’__dir__’, ’__divmod__’, ’__doc__’, ’__eq__’, ’__float__’,
....

←

→
Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -2
Introduction III - 8

Let’s see how we can improve our class
to support addition using the + sign.

file: numberplus1.py (class NumberPlus revised)
from number import Number

class NumberPlus(Number):
"Number with addition"
def __add__(self, x):
return NumberPlus(self.value+x.value)

def __str__(self):
return self.name

def upper(self):
return self.name.capitalize()

← 1,3

← 2,4

1 The plus() method has been renamed:
add ()

2 A new method has been added: str ()

3 add () is the method used implicitly in
expressions like: a+b

4 str () is the method used implicitly in calls
like: print(a)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -2
Introduction III - 8

Let’s see how we can improve our class
to support addition using the + sign.

file: numberplus1.py (class NumberPlus revised)
from number import Number

class NumberPlus(Number):
"Number with addition"
def __add__(self, x):
return NumberPlus(self.value+x.value)

def __str__(self):
return self.name

def upper(self):
return self.name.capitalize()

← 1,3

← 2,4

1 The plus() method has been renamed:
add ()

2 A new method has been added: str ()

3 add () is the method used implicitly in
expressions like: a+b

4 str () is the method used implicitly in calls
like: print(a)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -2
Introduction III - 8

Let’s see how we can improve our class
to support addition using the + sign.

file: numberplus1.py (class NumberPlus revised)
from number import Number

class NumberPlus(Number):
"Number with addition"
def __add__(self, x):
return NumberPlus(self.value+x.value)

def __str__(self):
return self.name

def upper(self):
return self.name.capitalize()

← 1,3

← 2,4

1 The plus() method has been renamed:
add ()

2 A new method has been added: str ()

3 add () is the method used implicitly in
expressions like: a+b

4 str () is the method used implicitly in calls
like: print(a)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -2
Introduction III - 8

Let’s see how we can improve our class
to support addition using the + sign.

file: numberplus1.py (class NumberPlus revised)
from number import Number

class NumberPlus(Number):
"Number with addition"
def __add__(self, x):
return NumberPlus(self.value+x.value)

def __str__(self):
return self.name

def upper(self):
return self.name.capitalize()

← 1,3

← 2,4

1 The plus() method has been renamed:
add ()

2 A new method has been added: str ()

3 add () is the method used implicitly in
expressions like: a+b

4 str () is the method used implicitly in calls
like: print(a)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -2
Introduction III - 8

Let’s see how we can improve our class
to support addition using the + sign.

file: numberplus1.py (class NumberPlus revised)
from number import Number

class NumberPlus(Number):
"Number with addition"
def __add__(self, x):
return NumberPlus(self.value+x.value)

def __str__(self):
return self.name

def upper(self):
return self.name.capitalize()

← 1,3

← 2,4

1 The plus() method has been renamed:
add ()

2 A new method has been added: str ()

3 add () is the method used implicitly in
expressions like: a+b

4 str () is the method used implicitly in calls
like: print(a)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -2
Introduction III - 8

Let’s see how we can improve our class
to support addition using the + sign.

file: numberplus1.py (class NumberPlus revised)
from number import Number

class NumberPlus(Number):
"Number with addition"
def __add__(self, x):
return NumberPlus(self.value+x.value)

def __str__(self):
return self.name

def upper(self):
return self.name.capitalize()

← 1,3

← 2,4

1 The plus() method has been renamed:
add ()

2 A new method has been added: str ()

3 add () is the method used implicitly in
expressions like: a+b

4 str () is the method used implicitly in calls
like: print(a)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -2
Introduction III - 8

Let’s see how we can improve our class
to support addition using the + sign.

file: numberplus1.py (class NumberPlus revised)
from number import Number

class NumberPlus(Number):
"Number with addition"
def __add__(self, x):
return NumberPlus(self.value+x.value)

def __str__(self):
return self.name

def upper(self):
return self.name.capitalize()

← 1,3

← 2,4

1 The plus() method has been renamed:
add ()

2 A new method has been added: str ()

3 add () is the method used implicitly in
expressions like: a+b

4 str () is the method used implicitly in calls
like: print(a)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -3
Introduction III - 9

And here’s what we get:

>>> from numberplus1 import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(5)
>>> print(a)
two
>>> print(a+b)
seven
>>> a
<numberplus1.NumberPlus object at 0x7f6bbcdf3748>
>>>

← 1
← 2,3

← 4

1 The built-in function print() calls the standard
method str to get the value of an object

2 The + sign in the expression calls the add ()

method of the first object, i.e.:
a+b is equivalent to: a. add (b)

3 As above, print() calls str () on the value
returned by add () (which is an object of
type NumberPlus)

4 The python interpreter in interactive mode,
when showing the value of an object, calls the
standard method repr ()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -3
Introduction III - 9

And here’s what we get:

>>> from numberplus1 import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(5)
>>> print(a)
two
>>> print(a+b)
seven
>>> a
<numberplus1.NumberPlus object at 0x7f6bbcdf3748>
>>>

← 1
← 2,3

← 4

1 The built-in function print() calls the standard
method str to get the value of an object

2 The + sign in the expression calls the add ()

method of the first object, i.e.:
a+b is equivalent to: a. add (b)

3 As above, print() calls str () on the value
returned by add () (which is an object of
type NumberPlus)

4 The python interpreter in interactive mode,
when showing the value of an object, calls the
standard method repr ()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -3
Introduction III - 9

And here’s what we get:

>>> from numberplus1 import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(5)
>>> print(a)
two
>>> print(a+b)
seven
>>> a
<numberplus1.NumberPlus object at 0x7f6bbcdf3748>
>>>

← 1
← 2,3

← 4

1 The built-in function print() calls the standard
method str to get the value of an object

2 The + sign in the expression calls the add ()

method of the first object, i.e.:
a+b is equivalent to: a. add (b)

3 As above, print() calls str () on the value
returned by add () (which is an object of
type NumberPlus)

4 The python interpreter in interactive mode,
when showing the value of an object, calls the
standard method repr ()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -3
Introduction III - 9

And here’s what we get:

>>> from numberplus1 import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(5)
>>> print(a)
two
>>> print(a+b)
seven
>>> a
<numberplus1.NumberPlus object at 0x7f6bbcdf3748>
>>>

← 1
← 2,3

← 4

1 The built-in function print() calls the standard
method str to get the value of an object

2 The + sign in the expression calls the add ()

method of the first object, i.e.:
a+b is equivalent to: a. add (b)

3 As above, print() calls str () on the value
returned by add () (which is an object of
type NumberPlus)

4 The python interpreter in interactive mode,
when showing the value of an object, calls the
standard method repr ()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -3
Introduction III - 9

And here’s what we get:

>>> from numberplus1 import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(5)
>>> print(a)
two
>>> print(a+b)
seven
>>> a
<numberplus1.NumberPlus object at 0x7f6bbcdf3748>
>>>

← 1
← 2,3

← 4

1 The built-in function print() calls the standard
method str to get the value of an object

2 The + sign in the expression calls the add ()

method of the first object, i.e.:
a+b is equivalent to: a. add (b)

3 As above, print() calls str () on the value
returned by add () (which is an object of
type NumberPlus)

4 The python interpreter in interactive mode,
when showing the value of an object, calls the
standard method repr ()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Emulating standard types -3
Introduction III - 9

And here’s what we get:

>>> from numberplus1 import NumberPlus
>>> a=NumberPlus(2)
>>> b=NumberPlus(5)
>>> print(a)
two
>>> print(a+b)
seven
>>> a
<numberplus1.NumberPlus object at 0x7f6bbcdf3748>
>>>

← 1
← 2,3

← 4

1 The built-in function print() calls the standard
method str to get the value of an object

2 The + sign in the expression calls the add ()

method of the first object, i.e.:
a+b is equivalent to: a. add (b)

3 As above, print() calls str () on the value
returned by add () (which is an object of
type NumberPlus)

4 The python interpreter in interactive mode,
when showing the value of an object, calls the
standard method repr ()

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate

An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator

A simple example of iterable: the tuple
>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:

1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator

2 k=iterator. next () is executed repeatedly
until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -1
Introduction III - 10

Iterables are objects on which a for
loop can iterate
An objects ”quacks” as an iterable if it
provides an iter method providing
an iterator
A simple example of iterable: the tuple

>>> a=(1,2,3,4,5)
>>> type(a)
<class ’tuple’>
>>> dir(a)
[’__add__’,, ’__init__’,, ’__iter__’, ..., ’count’, ’index’]
>>> for k in a:
... print(k, end=" - ")
...
1 - 2 - 3 - 4 - 5 - >>>
>>>

← 1,2

Behind the scenes of the for loop:
1 a. iter () is called to get an iterator
2 k=iterator. next () is executed repeatedly

until a StopIteration exception is raised

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -2
Introduction III - 11

Let’s make a class wich can be used as
an iterable

file: fibo1.py
class Fibo:
"Iterator for the Fibonacci series"
def __init__(self, maxv):
self.maxv = maxv

def __iter__(self):
self.a = 0
self.b = 1
return self

def __next__(self):
fib = self.a
if fib > self.maxv:
raise StopIteration

self.a, self.b = self.b, self.a + self.b
return fib

← 1

← 2
← 3

← 4

1 This class is provided with an iter ()

method
2 Which returns itself
3 The returned object is provided with a
next () method and thus it is an iterator

4 The end of the iteration is signalled with a
proper exception

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -2
Introduction III - 11

Let’s make a class wich can be used as
an iterable

file: fibo1.py
class Fibo:
"Iterator for the Fibonacci series"
def __init__(self, maxv):
self.maxv = maxv

def __iter__(self):
self.a = 0
self.b = 1
return self

def __next__(self):
fib = self.a
if fib > self.maxv:
raise StopIteration

self.a, self.b = self.b, self.a + self.b
return fib

← 1

← 2
← 3

← 4

1 This class is provided with an iter ()

method
2 Which returns itself
3 The returned object is provided with a
next () method and thus it is an iterator

4 The end of the iteration is signalled with a
proper exception

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -2
Introduction III - 11

Let’s make a class wich can be used as
an iterable

file: fibo1.py
class Fibo:
"Iterator for the Fibonacci series"
def __init__(self, maxv):
self.maxv = maxv

def __iter__(self):
self.a = 0
self.b = 1
return self

def __next__(self):
fib = self.a
if fib > self.maxv:
raise StopIteration

self.a, self.b = self.b, self.a + self.b
return fib

← 1

← 2
← 3

← 4

1 This class is provided with an iter ()

method

2 Which returns itself
3 The returned object is provided with a
next () method and thus it is an iterator

4 The end of the iteration is signalled with a
proper exception

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -2
Introduction III - 11

Let’s make a class wich can be used as
an iterable

file: fibo1.py
class Fibo:
"Iterator for the Fibonacci series"
def __init__(self, maxv):
self.maxv = maxv

def __iter__(self):
self.a = 0
self.b = 1
return self

def __next__(self):
fib = self.a
if fib > self.maxv:
raise StopIteration

self.a, self.b = self.b, self.a + self.b
return fib

← 1

← 2
← 3

← 4

1 This class is provided with an iter ()

method
2 Which returns itself

3 The returned object is provided with a
next () method and thus it is an iterator

4 The end of the iteration is signalled with a
proper exception

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -2
Introduction III - 11

Let’s make a class wich can be used as
an iterable

file: fibo1.py
class Fibo:
"Iterator for the Fibonacci series"
def __init__(self, maxv):
self.maxv = maxv

def __iter__(self):
self.a = 0
self.b = 1
return self

def __next__(self):
fib = self.a
if fib > self.maxv:
raise StopIteration

self.a, self.b = self.b, self.a + self.b
return fib

← 1

← 2
← 3

← 4

1 This class is provided with an iter ()

method
2 Which returns itself
3 The returned object is provided with a
next () method and thus it is an iterator

4 The end of the iteration is signalled with a
proper exception

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -2
Introduction III - 11

Let’s make a class wich can be used as
an iterable

file: fibo1.py
class Fibo:
"Iterator for the Fibonacci series"
def __init__(self, maxv):
self.maxv = maxv

def __iter__(self):
self.a = 0
self.b = 1
return self

def __next__(self):
fib = self.a
if fib > self.maxv:
raise StopIteration

self.a, self.b = self.b, self.a + self.b
return fib

← 1

← 2
← 3

← 4

1 This class is provided with an iter ()

method
2 Which returns itself
3 The returned object is provided with a
next () method and thus it is an iterator

4 The end of the iteration is signalled with a
proper exception

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -2
Introduction III - 11

Let’s make a class wich can be used as
an iterable

file: fibo1.py
class Fibo:
"Iterator for the Fibonacci series"
def __init__(self, maxv):
self.maxv = maxv

def __iter__(self):
self.a = 0
self.b = 1
return self

def __next__(self):
fib = self.a
if fib > self.maxv:
raise StopIteration

self.a, self.b = self.b, self.a + self.b
return fib

← 1

← 2
← 3

← 4

1 This class is provided with an iter ()

method
2 Which returns itself
3 The returned object is provided with a
next () method and thus it is an iterator

4 The end of the iteration is signalled with a
proper exception

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -3
Introduction III - 12

Let’s see the Fibo class in action:

>>> from fibo1 import Fibo
>>> for f in Fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb = Fibo(900)
>>> fb
<fibo1.Fibo object at 0x7f669bc0c048>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 2

← 3

1 Natural use of iterators is in for loops
2 fb is an instance of class Fibo
3 The built-in function list() creates a list from

an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -3
Introduction III - 12

Let’s see the Fibo class in action:

>>> from fibo1 import Fibo
>>> for f in Fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb = Fibo(900)
>>> fb
<fibo1.Fibo object at 0x7f669bc0c048>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 2

← 3

1 Natural use of iterators is in for loops
2 fb is an instance of class Fibo
3 The built-in function list() creates a list from

an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -3
Introduction III - 12

Let’s see the Fibo class in action:

>>> from fibo1 import Fibo
>>> for f in Fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb = Fibo(900)
>>> fb
<fibo1.Fibo object at 0x7f669bc0c048>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 2

← 3

1 Natural use of iterators is in for loops
2 fb is an instance of class Fibo
3 The built-in function list() creates a list from

an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -3
Introduction III - 12

Let’s see the Fibo class in action:

>>> from fibo1 import Fibo
>>> for f in Fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb = Fibo(900)
>>> fb
<fibo1.Fibo object at 0x7f669bc0c048>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 2

← 3

1 Natural use of iterators is in for loops

2 fb is an instance of class Fibo
3 The built-in function list() creates a list from

an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -3
Introduction III - 12

Let’s see the Fibo class in action:

>>> from fibo1 import Fibo
>>> for f in Fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb = Fibo(900)
>>> fb
<fibo1.Fibo object at 0x7f669bc0c048>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 2

← 3

1 Natural use of iterators is in for loops
2 fb is an instance of class Fibo

3 The built-in function list() creates a list from
an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -3
Introduction III - 12

Let’s see the Fibo class in action:

>>> from fibo1 import Fibo
>>> for f in Fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb = Fibo(900)
>>> fb
<fibo1.Fibo object at 0x7f669bc0c048>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 2

← 3

1 Natural use of iterators is in for loops
2 fb is an instance of class Fibo
3 The built-in function list() creates a list from

an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Iterables & iterators -3
Introduction III - 12

Let’s see the Fibo class in action:

>>> from fibo1 import Fibo
>>> for f in Fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb = Fibo(900)
>>> fb
<fibo1.Fibo object at 0x7f669bc0c048>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 2

← 3

1 Natural use of iterators is in for loops
2 fb is an instance of class Fibo
3 The built-in function list() creates a list from

an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...
2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...
2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...
2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...
2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...

2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...
2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...
2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -1
Introduction III - 13

A generator is a syntax construct designed to cre-
ate simple iterators

file: fibo2.py
def fibo(maxv):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

← 1

← 2

1 A generator looks like a function ...
2 ... returning values with the yield statement

>>> from fibo2 import fibo
>>> for f in fibo(1000):
... print(f, end=" ")
...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 >>>
>>> fb=fibo(900)
>>> fb
<generator object fibo at 0x7f5c47901c50>
>>> list(fb)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
>>>

← 1

← 1

← 1

1 A generator is used exactly like an iterator

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -2
Introduction III - 14

Comprehensions are another form of simple it-
erators

>>> [x for x in range(30) if not x%2]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
>>>

← 1

1 The built-in function range(30) returns an
iterator iterating on integers 0..29

A file object is an iterable:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>>
>>> dir(fpt)
[’_CHUNK_SIZE’, ’__class__’, ..., ’__iter__’, ..., ’__next__’, ...]←←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -2
Introduction III - 14

Comprehensions are another form of simple it-
erators

>>> [x for x in range(30) if not x%2]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
>>>

← 1

1 The built-in function range(30) returns an
iterator iterating on integers 0..29

A file object is an iterable:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>>
>>> dir(fpt)
[’_CHUNK_SIZE’, ’__class__’, ..., ’__iter__’, ..., ’__next__’, ...]←←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -2
Introduction III - 14

Comprehensions are another form of simple it-
erators

>>> [x for x in range(30) if not x%2]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
>>>

← 1

1 The built-in function range(30) returns an
iterator iterating on integers 0..29

A file object is an iterable:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>>
>>> dir(fpt)
[’_CHUNK_SIZE’, ’__class__’, ..., ’__iter__’, ..., ’__next__’, ...]

←←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -2
Introduction III - 14

Comprehensions are another form of simple it-
erators

>>> [x for x in range(30) if not x%2]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
>>>

← 1

1 The built-in function range(30) returns an
iterator iterating on integers 0..29

A file object is an iterable:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>>
>>> dir(fpt)
[’_CHUNK_SIZE’, ’__class__’, ..., ’__iter__’, ..., ’__next__’, ...]←←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Generators -2
Introduction III - 14

Comprehensions are another form of simple it-
erators

>>> [x for x in range(30) if not x%2]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
>>>

← 1

1 The built-in function range(30) returns an
iterator iterating on integers 0..29

A file object is an iterable:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>>
>>> dir(fpt)
[’_CHUNK_SIZE’, ’__class__’, ..., ’__iter__’, ..., ’__next__’, ...]←←

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...

2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...

3 You need not to bother closing the file, because
the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -1
Introduction III - 15

Context managers are programming constructs
useful whenever your program needs a resource
which must to be allocated for use and released
after use.

Classical file access example:
>>> fpt = open("file.txt")
>>> for line in fpt:
... print(line, end="")
...
Linea 1
Linea 2
Ultima linea
>>> fpt.close()

← 1

← 2

1 In order to read a file you must first open it...
2 And then close it, when you’re done

The same file access ”a la Python”:
>>> with open("file.txt") as fpt:
... for line in fpt:
... print(line, end="")
...

← 1,2

← 3

1 Context managers are used with the with
statement

2 A file object is also a context manager...
3 You need not to bother closing the file, because

the context manager does it for you:
even in case of errors!

→
Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -2
Introduction III - 16

You can build your own context manager by cre-
ating a class as in the following example:

Example: a File object
class File():
def __init__(self, filename, mode):
self.filename = filename
self.mode = mode

def __enter__(self):
self.open_file = open(self.filename, self.mode)
return self.open_file

def __exit__(self, *args):
self.open_file.close()

← 1

← 2

1 Context managers must define the method
enter () ...

2 ... and the method exit ()

Context managers are so useful in everyday’s
programming that Python provides helpers for
building context managers in a dedicated pack-
age: contextlib

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -2
Introduction III - 16

You can build your own context manager by cre-
ating a class as in the following example:

Example: a File object
class File():
def __init__(self, filename, mode):
self.filename = filename
self.mode = mode

def __enter__(self):
self.open_file = open(self.filename, self.mode)
return self.open_file

def __exit__(self, *args):
self.open_file.close()

← 1

← 2

1 Context managers must define the method
enter () ...

2 ... and the method exit ()

Context managers are so useful in everyday’s
programming that Python provides helpers for
building context managers in a dedicated pack-
age: contextlib

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -2
Introduction III - 16

You can build your own context manager by cre-
ating a class as in the following example:

Example: a File object
class File():
def __init__(self, filename, mode):
self.filename = filename
self.mode = mode

def __enter__(self):
self.open_file = open(self.filename, self.mode)
return self.open_file

def __exit__(self, *args):
self.open_file.close()

← 1

← 2

1 Context managers must define the method
enter () ...

2 ... and the method exit ()

Context managers are so useful in everyday’s
programming that Python provides helpers for
building context managers in a dedicated pack-
age: contextlib

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -2
Introduction III - 16

You can build your own context manager by cre-
ating a class as in the following example:

Example: a File object
class File():
def __init__(self, filename, mode):
self.filename = filename
self.mode = mode

def __enter__(self):
self.open_file = open(self.filename, self.mode)
return self.open_file

def __exit__(self, *args):
self.open_file.close()

← 1

← 2

1 Context managers must define the method
enter () ...

2 ... and the method exit ()

Context managers are so useful in everyday’s
programming that Python provides helpers for
building context managers in a dedicated pack-
age: contextlib

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -2
Introduction III - 16

You can build your own context manager by cre-
ating a class as in the following example:

Example: a File object
class File():
def __init__(self, filename, mode):
self.filename = filename
self.mode = mode

def __enter__(self):
self.open_file = open(self.filename, self.mode)
return self.open_file

def __exit__(self, *args):
self.open_file.close()

← 1

← 2

1 Context managers must define the method
enter () ...

2 ... and the method exit ()

Context managers are so useful in everyday’s
programming that Python provides helpers for
building context managers in a dedicated pack-
age: contextlib

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Context managers -2
Introduction III - 16

You can build your own context manager by cre-
ating a class as in the following example:

Example: a File object
class File():
def __init__(self, filename, mode):
self.filename = filename
self.mode = mode

def __enter__(self):
self.open_file = open(self.filename, self.mode)
return self.open_file

def __exit__(self, *args):
self.open_file.close()

← 1

← 2

1 Context managers must define the method
enter () ...

2 ... and the method exit ()

Context managers are so useful in everyday’s
programming that Python provides helpers for
building context managers in a dedicated pack-
age: contextlib

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function
3 The returned function does “something” with

the original one. In this case:
gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function
3 The returned function does “something” with

the original one. In this case:
gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function
3 The returned function does “something” with

the original one. In this case:
gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function
3 The returned function does “something” with

the original one. In this case:
gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function
3 The returned function does “something” with

the original one. In this case:
gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function

3 The returned function does “something” with
the original one. In this case:

gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function
3 The returned function does “something” with

the original one. In this case:
gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -1
Introduction III - 17

Decorators are language constructs which allow
to dynamically alter a function, a method or a
class without modifying the code of the function
or using a subclass.

file: decorator.py
import time

def my_timer(f):
def wrapper(*pw, **kw):
tm0 = time.time()
ret = f(*pw, **kw)
tm1 = time.time()
print("Elapsed time:", tm1-tm0, "s")

return wrapper

← 1

← 3
← 3

← 2

1 A function decorator is a function accepting a
function as only argument ...

2 ... and returning a function
3 The returned function does “something” with

the original one. In this case:
gets current time
calls the original function
computes and prints the elapsed time

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job
2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job
2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job
2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job
2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job
2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job

2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job
2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Decorators -2
Introduction III - 18

Example: decorating a function - File: fibo3.py
from decorator import my_timer

@my_timer
def fibo_print(n):
"Prints n elements of the Fibonacci series"
result = []
a, b = 0, 1
while len(result) < n:
result.append(b)
a, b = b, a+b
print(a, end=" ")

print()

← 1

1 The @ operator “decorates” the following
function with the given decorator

At execution:
>>> from fibo3 import fibo_print
>>> fibo_print(8)
1 1 2 3 5 8 13 21
Elapsed time: 4.1961669921875e-05 s
>>>

← 1
← 2

1 The original function does its job
2 The decorator does its job

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Development process
Introduction III- 19

An in-deep coverage of development and test
techniques is far beyond the limits of this course,
but a few notes and suggestions may be useful for
the interested audience.

We will examine some tools useful for the
various developing phases:

Coding

Code static check

Debugging

Testing

There are also some Integrated Development En-
vironment (IDE) programs, both commercial and
freely available, which provide several develop-
ment tools in a single application.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Development process
Introduction III- 19

An in-deep coverage of development and test
techniques is far beyond the limits of this course,
but a few notes and suggestions may be useful for
the interested audience.

We will examine some tools useful for the
various developing phases:

Coding

Code static check

Debugging

Testing

There are also some Integrated Development En-
vironment (IDE) programs, both commercial and
freely available, which provide several develop-
ment tools in a single application.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Development process
Introduction III- 19

An in-deep coverage of development and test
techniques is far beyond the limits of this course,
but a few notes and suggestions may be useful for
the interested audience.

We will examine some tools useful for the
various developing phases:

Coding

Code static check

Debugging

Testing

There are also some Integrated Development En-
vironment (IDE) programs, both commercial and
freely available, which provide several develop-
ment tools in a single application.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Development process
Introduction III- 19

An in-deep coverage of development and test
techniques is far beyond the limits of this course,
but a few notes and suggestions may be useful for
the interested audience.

We will examine some tools useful for the
various developing phases:

Coding

Code static check

Debugging

Testing

There are also some Integrated Development En-
vironment (IDE) programs, both commercial and
freely available, which provide several develop-
ment tools in a single application.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Coding tools
Introduction III - 20

Language aware editors

Language aware editors are text editors which
highlight the various elements of the
programming language by using different colors

The programmer can thus better distinguish
reserved words, variables, constants and so on

Examples:
vim

emacs

nano

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Coding tools
Introduction III - 20

Language aware editors

Language aware editors are text editors which
highlight the various elements of the
programming language by using different colors

The programmer can thus better distinguish
reserved words, variables, constants and so on

Examples:
vim

emacs

nano

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Coding tools
Introduction III - 20

Language aware editors

Language aware editors are text editors which
highlight the various elements of the
programming language by using different colors

The programmer can thus better distinguish
reserved words, variables, constants and so on

Examples:
vim

emacs

nano

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Coding tools
Introduction III - 20

Language aware editors

Language aware editors are text editors which
highlight the various elements of the
programming language by using different colors

The programmer can thus better distinguish
reserved words, variables, constants and so on

Examples:
vim

emacs

nano

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Coding tools
Introduction III - 20

Language aware editors

Language aware editors are text editors which
highlight the various elements of the
programming language by using different colors

The programmer can thus better distinguish
reserved words, variables, constants and so on

Examples:
vim

emacs

nano

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -1
Introduction III - 21

Dynamic programming languages such as Python
have very limited early diagnostic capabilities:
most errors are discovered only when (that par-
ticular portion of) the program is executed.

File: bugged.py
import time

a = 502
i = 0
while a > 0:
time.sleep(1)
print(a)
if a == 500:
i = j+1
print("500 seconds to the end")

a -= 1

← the bug is here

When running the program:
$ python bugged.py
502
501
500
Traceback (most recent call last):
File "bugged.py", line 9, in <module>
i = j+1

NameError: name ’j’ is not defined

← 1,2

1 The error has been found after three iterations
2 But if the value of a were, say, 10000, the error

whould have happened after 9500 iterations!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -1
Introduction III - 21

Dynamic programming languages such as Python
have very limited early diagnostic capabilities:
most errors are discovered only when (that par-
ticular portion of) the program is executed.

File: bugged.py
import time

a = 502
i = 0
while a > 0:
time.sleep(1)
print(a)
if a == 500:
i = j+1
print("500 seconds to the end")

a -= 1

← the bug is here

When running the program:
$ python bugged.py
502
501
500
Traceback (most recent call last):
File "bugged.py", line 9, in <module>
i = j+1

NameError: name ’j’ is not defined

← 1,2

1 The error has been found after three iterations
2 But if the value of a were, say, 10000, the error

whould have happened after 9500 iterations!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -1
Introduction III - 21

Dynamic programming languages such as Python
have very limited early diagnostic capabilities:
most errors are discovered only when (that par-
ticular portion of) the program is executed.

File: bugged.py
import time

a = 502
i = 0
while a > 0:
time.sleep(1)
print(a)
if a == 500:
i = j+1
print("500 seconds to the end")

a -= 1

← the bug is here

When running the program:
$ python bugged.py
502
501
500
Traceback (most recent call last):
File "bugged.py", line 9, in <module>
i = j+1

NameError: name ’j’ is not defined

← 1,2

1 The error has been found after three iterations
2 But if the value of a were, say, 10000, the error

whould have happened after 9500 iterations!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -1
Introduction III - 21

Dynamic programming languages such as Python
have very limited early diagnostic capabilities:
most errors are discovered only when (that par-
ticular portion of) the program is executed.

File: bugged.py
import time

a = 502
i = 0
while a > 0:
time.sleep(1)
print(a)
if a == 500:
i = j+1
print("500 seconds to the end")

a -= 1

← the bug is here

When running the program:
$ python bugged.py
502
501
500
Traceback (most recent call last):
File "bugged.py", line 9, in <module>
i = j+1

NameError: name ’j’ is not defined

← 1,2

1 The error has been found after three iterations
2 But if the value of a were, say, 10000, the error

whould have happened after 9500 iterations!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -1
Introduction III - 21

Dynamic programming languages such as Python
have very limited early diagnostic capabilities:
most errors are discovered only when (that par-
ticular portion of) the program is executed.

File: bugged.py
import time

a = 502
i = 0
while a > 0:
time.sleep(1)
print(a)
if a == 500:
i = j+1
print("500 seconds to the end")

a -= 1

← the bug is here

When running the program:
$ python bugged.py
502
501
500
Traceback (most recent call last):
File "bugged.py", line 9, in <module>
i = j+1

NameError: name ’j’ is not defined

← 1,2

1 The error has been found after three iterations

2 But if the value of a were, say, 10000, the error
whould have happened after 9500 iterations!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -1
Introduction III - 21

Dynamic programming languages such as Python
have very limited early diagnostic capabilities:
most errors are discovered only when (that par-
ticular portion of) the program is executed.

File: bugged.py
import time

a = 502
i = 0
while a > 0:
time.sleep(1)
print(a)
if a == 500:
i = j+1
print("500 seconds to the end")

a -= 1

← the bug is here

When running the program:
$ python bugged.py
502
501
500
Traceback (most recent call last):
File "bugged.py", line 9, in <module>
i = j+1

NameError: name ’j’ is not defined

← 1,2

1 The error has been found after three iterations
2 But if the value of a were, say, 10000, the error

whould have happened after 9500 iterations!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -1
Introduction III - 21

Dynamic programming languages such as Python
have very limited early diagnostic capabilities:
most errors are discovered only when (that par-
ticular portion of) the program is executed.

File: bugged.py
import time

a = 502
i = 0
while a > 0:
time.sleep(1)
print(a)
if a == 500:
i = j+1
print("500 seconds to the end")

a -= 1

← the bug is here

When running the program:
$ python bugged.py
502
501
500
Traceback (most recent call last):
File "bugged.py", line 9, in <module>
i = j+1

NameError: name ’j’ is not defined

← 1,2

1 The error has been found after three iterations
2 But if the value of a were, say, 10000, the error

whould have happened after 9500 iterations!

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file
2 The error is detected by pylint
3 pylint performs also several “quality checks”
4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file
2 The error is detected by pylint
3 pylint performs also several “quality checks”
4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file
2 The error is detected by pylint
3 pylint performs also several “quality checks”
4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file

2 The error is detected by pylint
3 pylint performs also several “quality checks”
4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file
2 The error is detected by pylint

3 pylint performs also several “quality checks”
4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file
2 The error is detected by pylint
3 pylint performs also several “quality checks”

4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file
2 The error is detected by pylint
3 pylint performs also several “quality checks”
4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -2
Introduction III - 22

pylint is a static code analizer which can discover
many bugs before the program is actually exe-
cuted.

$ pylint bugged.py
************* Module bugged
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Constant name "a" doesn’t conform to UPPER_CASE naming style (invalid-name)
E: 9,12: Undefined variable ’j’ (undefined-variable)

Your code has been rated at 3.00/10

← 1
← 3
← 2

← 4

1 Using pylint to analyze a Python file
2 The error is detected by pylint
3 pylint performs also several “quality checks”
4 And computes a global quality score.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -3
Introduction III - 23

mypy uses Python 3 function syntax to perform
static type checking on your program.

File: fibo4.py
def fibo(maxv: int):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

if __name__ == "__main__":
for f in fibo(300.5):
print(f, end=" ")

print()

← annotation

$ python fibo4.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
$ mypy fibo4.py
fibo4.py:8: error: Argument 1 to "fibo" has incompatible type "float"; expected "int"

← 1
← 2

1 Annotations are ignored by the Python
interpreter

2 But are used by mypy to do type checking

The standard package typing provides more
powerful tools to improve static type checking

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -3
Introduction III - 23

mypy uses Python 3 function syntax to perform
static type checking on your program.

File: fibo4.py
def fibo(maxv: int):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

if __name__ == "__main__":
for f in fibo(300.5):
print(f, end=" ")

print()

← annotation

$ python fibo4.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
$ mypy fibo4.py
fibo4.py:8: error: Argument 1 to "fibo" has incompatible type "float"; expected "int"

← 1
← 2

1 Annotations are ignored by the Python
interpreter

2 But are used by mypy to do type checking

The standard package typing provides more
powerful tools to improve static type checking

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -3
Introduction III - 23

mypy uses Python 3 function syntax to perform
static type checking on your program.

File: fibo4.py
def fibo(maxv: int):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

if __name__ == "__main__":
for f in fibo(300.5):
print(f, end=" ")

print()

← annotation

$ python fibo4.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
$ mypy fibo4.py
fibo4.py:8: error: Argument 1 to "fibo" has incompatible type "float"; expected "int"

← 1
← 2

1 Annotations are ignored by the Python
interpreter

2 But are used by mypy to do type checking

The standard package typing provides more
powerful tools to improve static type checking

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -3
Introduction III - 23

mypy uses Python 3 function syntax to perform
static type checking on your program.

File: fibo4.py
def fibo(maxv: int):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

if __name__ == "__main__":
for f in fibo(300.5):
print(f, end=" ")

print()

← annotation

$ python fibo4.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
$ mypy fibo4.py
fibo4.py:8: error: Argument 1 to "fibo" has incompatible type "float"; expected "int"

← 1
← 2

1 Annotations are ignored by the Python
interpreter

2 But are used by mypy to do type checking

The standard package typing provides more
powerful tools to improve static type checking

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -3
Introduction III - 23

mypy uses Python 3 function syntax to perform
static type checking on your program.

File: fibo4.py
def fibo(maxv: int):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

if __name__ == "__main__":
for f in fibo(300.5):
print(f, end=" ")

print()

← annotation

$ python fibo4.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
$ mypy fibo4.py
fibo4.py:8: error: Argument 1 to "fibo" has incompatible type "float"; expected "int"

← 1
← 2

1 Annotations are ignored by the Python
interpreter

2 But are used by mypy to do type checking

The standard package typing provides more
powerful tools to improve static type checking

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -3
Introduction III - 23

mypy uses Python 3 function syntax to perform
static type checking on your program.

File: fibo4.py
def fibo(maxv: int):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

if __name__ == "__main__":
for f in fibo(300.5):
print(f, end=" ")

print()

← annotation

$ python fibo4.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
$ mypy fibo4.py
fibo4.py:8: error: Argument 1 to "fibo" has incompatible type "float"; expected "int"

← 1
← 2

1 Annotations are ignored by the Python
interpreter

2 But are used by mypy to do type checking

The standard package typing provides more
powerful tools to improve static type checking

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Static analysis tools -3
Introduction III - 23

mypy uses Python 3 function syntax to perform
static type checking on your program.

File: fibo4.py
def fibo(maxv: int):
a, b = 0, 1
while a < maxv:
yield a
a, b = b, a+b

if __name__ == "__main__":
for f in fibo(300.5):
print(f, end=" ")

print()

← annotation

$ python fibo4.py
0 1 1 2 3 5 8 13 21 34 55 89 144 233
$ mypy fibo4.py
fibo4.py:8: error: Argument 1 to "fibo" has incompatible type "float"; expected "int"

← 1
← 2

1 Annotations are ignored by the Python
interpreter

2 But are used by mypy to do type checking

The standard package typing provides more
powerful tools to improve static type checking

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 24

Python is provided with an interactive de-
bugger (pdb) which allows to control pro-
gram execution

With pdb you can:

Define breakpoints
Execute a program step by step
Look into variables
Execute functions at the prompt

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 24

Python is provided with an interactive de-
bugger (pdb) which allows to control pro-
gram execution

With pdb you can:

Define breakpoints
Execute a program step by step
Look into variables
Execute functions at the prompt

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 24

Python is provided with an interactive de-
bugger (pdb) which allows to control pro-
gram execution

With pdb you can:

Define breakpoints

Execute a program step by step
Look into variables
Execute functions at the prompt

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 24

Python is provided with an interactive de-
bugger (pdb) which allows to control pro-
gram execution

With pdb you can:

Define breakpoints
Execute a program step by step

Look into variables
Execute functions at the prompt

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 24

Python is provided with an interactive de-
bugger (pdb) which allows to control pro-
gram execution

With pdb you can:

Define breakpoints
Execute a program step by step
Look into variables

Execute functions at the prompt

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 24

Python is provided with an interactive de-
bugger (pdb) which allows to control pro-
gram execution

With pdb you can:

Define breakpoints
Execute a program step by step
Look into variables
Execute functions at the prompt

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 24

Python is provided with an interactive de-
bugger (pdb) which allows to control pro-
gram execution

With pdb you can:

Define breakpoints
Execute a program step by step
Look into variables
Execute functions at the prompt

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.

2 The debugger stops immediately at the first line
of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9

4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution

5 The debugger stops at the breakpoint (just
before executing line 9)

6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)

6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)

7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

The python debugger-1
Introduction III- 25

Let’s see a brief example:
pdb fibo.py
> .../code/fibo.py(1)<module>()
-> "Module for the computation of Fibonacci series"
(Pdb) b 9
Breakpoint 1 at .../code/fibo.py:9
(Pdb) c
> .../code/fibo.py(9)fibo()
-> a, b = 0, 1
(Pdb) n
> .../code/fibo.py(10)fibo()
-> while b < n:
...
(Pdb) p result
[1, 1, 2]

← 1

← 2,3
← 4
← 5,6

← 6

← 7

1 Start the debugger on program fibo.py.
2 The debugger stops immediately at the first line

of the program after showing the line of code
just to be executed

3 Set a breakpoint at line number 9
4 Continue (actually: start) the execution
5 The debugger stops at the breakpoint (just

before executing line 9)
6 Execute a number of steps (9)
7 Now see what’s in variable result

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase
2 The test case is made up of a set of tests

(methods named test ...)
3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase
2 The test case is made up of a set of tests

(methods named test ...)
3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase
2 The test case is made up of a set of tests

(methods named test ...)
3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase

2 The test case is made up of a set of tests
(methods named test ...)

3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase
2 The test case is made up of a set of tests

(methods named test ...)

3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase
2 The test case is made up of a set of tests

(methods named test ...)
3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase
2 The test case is made up of a set of tests

(methods named test ...)
3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -1
Introduction III- 26

Python provides a package to support the gener-
ation of testing procedures for python code:

unittest

file: test number.py - A simple example
import unittest
from numberplus1 import NumberPlus

class TestNumber(unittest.TestCase):

def test_upper(self):
self.assertTrue(NumberPlus(3).upper(), "Three")

def test_sum(self):
self.assertEqual((NumberPlus(2)+NumberPlus(5)).value, 7)

def test_overflow(self):
with self.assertRaises(IndexError):
NumberPlus(12)

if __name__ == "__main__":
unittest.main()

← 1
← 2

← 2

← 2

← 3

1 A “test case” is a class derived from TestCase
2 The test case is made up of a set of tests

(methods named test ...)
3 Here’s where the test is run

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods

A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.

A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.

A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.

A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests

A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Testing tools -2
Introduction III- 27

Now we run the test:
$ python test_number.py
...
--
Ran 3 tests in 0.000s

OK

The unittest package provides several
other tools for building effective testing
procedures:

Several assertXxx() methods
A setUp() method in TestCase will be
executed before any test.
A tearDown() method in TestCase will be
executed after any test.
A TestSuite class to group together related
test cases.
A function setUpModule() will be called at the
beginning of all tests
A function tearDownModule() will be called at
the end of all tests

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IDE for Python
Introduction III- 28

An Integrated Development Environment is an ap-
plication integrating several of the programming
tools quoted in previous slides. Here we quote
only a few of them.

IDLE
The “standard” python IDE. It is itself written in
Python so that it is available for any platform
supporting Python [free]

Eclipse
Eclipse is a multi language IDE supporting
Python via the PyDev plugin. Available for
Windows, Linux, MacOS [free].

Spyder
An IDE designed for scientific software
development. Available for Windows, Linux,
MacOS [free].

Visual Studio
Has a Python plugin. Available for Windows
only [proprietary]

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IDE for Python
Introduction III- 28

An Integrated Development Environment is an ap-
plication integrating several of the programming
tools quoted in previous slides. Here we quote
only a few of them.

IDLE
The “standard” python IDE. It is itself written in
Python so that it is available for any platform
supporting Python [free]

Eclipse
Eclipse is a multi language IDE supporting
Python via the PyDev plugin. Available for
Windows, Linux, MacOS [free].

Spyder
An IDE designed for scientific software
development. Available for Windows, Linux,
MacOS [free].

Visual Studio
Has a Python plugin. Available for Windows
only [proprietary]

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IDE for Python
Introduction III- 28

An Integrated Development Environment is an ap-
plication integrating several of the programming
tools quoted in previous slides. Here we quote
only a few of them.

IDLE
The “standard” python IDE. It is itself written in
Python so that it is available for any platform
supporting Python [free]

Eclipse
Eclipse is a multi language IDE supporting
Python via the PyDev plugin. Available for
Windows, Linux, MacOS [free].

Spyder
An IDE designed for scientific software
development. Available for Windows, Linux,
MacOS [free].

Visual Studio
Has a Python plugin. Available for Windows
only [proprietary]

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IDE for Python
Introduction III- 28

An Integrated Development Environment is an ap-
plication integrating several of the programming
tools quoted in previous slides. Here we quote
only a few of them.

IDLE
The “standard” python IDE. It is itself written in
Python so that it is available for any platform
supporting Python [free]

Eclipse
Eclipse is a multi language IDE supporting
Python via the PyDev plugin. Available for
Windows, Linux, MacOS [free].

Spyder
An IDE designed for scientific software
development. Available for Windows, Linux,
MacOS [free].

Visual Studio
Has a Python plugin. Available for Windows
only [proprietary]

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IDE for Python
Introduction III- 28

An Integrated Development Environment is an ap-
plication integrating several of the programming
tools quoted in previous slides. Here we quote
only a few of them.

IDLE
The “standard” python IDE. It is itself written in
Python so that it is available for any platform
supporting Python [free]

Eclipse
Eclipse is a multi language IDE supporting
Python via the PyDev plugin. Available for
Windows, Linux, MacOS [free].

Spyder
An IDE designed for scientific software
development. Available for Windows, Linux,
MacOS [free].

Visual Studio
Has a Python plugin. Available for Windows
only [proprietary]

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IDE for Python
Introduction III- 28

An Integrated Development Environment is an ap-
plication integrating several of the programming
tools quoted in previous slides. Here we quote
only a few of them.

IDLE
The “standard” python IDE. It is itself written in
Python so that it is available for any platform
supporting Python [free]

Eclipse
Eclipse is a multi language IDE supporting
Python via the PyDev plugin. Available for
Windows, Linux, MacOS [free].

Spyder
An IDE designed for scientific software
development. Available for Windows, Linux,
MacOS [free].

Visual Studio
Has a Python plugin. Available for Windows
only [proprietary]

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org

The command to be used is pip1. E.g.:
pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler

Some suggestions:
If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.

Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.

pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package

Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

the Python Package Index
Introduction III - 29

PyPI is the main repository for Python
packages and applications

pypi.python.org
The command to be used is pip1. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation with pip will
require the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better (i.e.: simpler) to use
it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

1 The command might sometimes be called pip3.

→
Introduction to Python - III L. Fini, Novembre-dicembre 2020

http://pypi.python.org

IPython -1
Introduction III- 30

IPython: a Python environment optimized
for interactive use

It provides:

An enhanced version of the Python
prompt

Full compatibility with Python
Powerful tab completion mechanism
History (persistent across sessions)
%magic commands

Enhanced introspection tools
Standard Python’s help system
Easy access to doc strings

Full integration with numerical and
plotting packages
numpy, scipy
matplotlib

Support for parallel applications
At the core of the Jupyter notebook

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -1
Introduction III- 30

IPython: a Python environment optimized
for interactive use

It provides:
An enhanced version of the Python
prompt

Full compatibility with Python
Powerful tab completion mechanism
History (persistent across sessions)
%magic commands

Enhanced introspection tools
Standard Python’s help system
Easy access to doc strings

Full integration with numerical and
plotting packages
numpy, scipy
matplotlib

Support for parallel applications
At the core of the Jupyter notebook

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -1
Introduction III- 30

IPython: a Python environment optimized
for interactive use

It provides:
An enhanced version of the Python
prompt

Full compatibility with Python
Powerful tab completion mechanism
History (persistent across sessions)
%magic commands

Enhanced introspection tools
Standard Python’s help system
Easy access to doc strings

Full integration with numerical and
plotting packages
numpy, scipy
matplotlib

Support for parallel applications
At the core of the Jupyter notebook

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -1
Introduction III- 30

IPython: a Python environment optimized
for interactive use

It provides:
An enhanced version of the Python
prompt

Full compatibility with Python
Powerful tab completion mechanism
History (persistent across sessions)
%magic commands

Enhanced introspection tools
Standard Python’s help system
Easy access to doc strings

Full integration with numerical and
plotting packages
numpy, scipy
matplotlib

Support for parallel applications
At the core of the Jupyter notebook

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -1
Introduction III- 30

IPython: a Python environment optimized
for interactive use

It provides:
An enhanced version of the Python
prompt

Full compatibility with Python
Powerful tab completion mechanism
History (persistent across sessions)
%magic commands

Enhanced introspection tools
Standard Python’s help system
Easy access to doc strings

Full integration with numerical and
plotting packages
numpy, scipy
matplotlib

Support for parallel applications

At the core of the Jupyter notebook

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -1
Introduction III- 30

IPython: a Python environment optimized
for interactive use

It provides:
An enhanced version of the Python
prompt

Full compatibility with Python
Powerful tab completion mechanism
History (persistent across sessions)
%magic commands

Enhanced introspection tools
Standard Python’s help system
Easy access to doc strings

Full integration with numerical and
plotting packages
numpy, scipy
matplotlib

Support for parallel applications
At the core of the Jupyter notebook

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -1
Introduction III- 30

IPython: a Python environment optimized
for interactive use

It provides:
An enhanced version of the Python
prompt

Full compatibility with Python
Powerful tab completion mechanism
History (persistent across sessions)
%magic commands

Enhanced introspection tools
Standard Python’s help system
Easy access to doc strings

Full integration with numerical and
plotting packages
numpy, scipy
matplotlib

Support for parallel applications
At the core of the Jupyter notebook

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 31

$ ipython --pylab
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.3.0 -- An enhanced Interactive Python. Type ’?’ for help.
Using matplotlib backend: TkAgg

In [1]: a=3

In [2]: a+1
Out[2]: 4

In [3]:

← 1

prompt
user input

ipython output

In [3]: %whos
Variable Type Data/Info

a int 3

In [4]: !pwd
/home/lfini/Personale/CorsiSeminari/2019-Python

← 2

← 3

1 The –pylab option preloads numpy and
matplotlib in ipython

2 %whos: magic command - list currently
defined variables

3 !pwd: external shell command

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 31

$ ipython --pylab
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.3.0 -- An enhanced Interactive Python. Type ’?’ for help.
Using matplotlib backend: TkAgg

In [1]: a=3

In [2]: a+1
Out[2]: 4

In [3]:

← 1

prompt
user input

ipython output

In [3]: %whos
Variable Type Data/Info

a int 3

In [4]: !pwd
/home/lfini/Personale/CorsiSeminari/2019-Python

← 2

← 3

1 The –pylab option preloads numpy and
matplotlib in ipython

2 %whos: magic command - list currently
defined variables

3 !pwd: external shell command

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 31

$ ipython --pylab
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.3.0 -- An enhanced Interactive Python. Type ’?’ for help.
Using matplotlib backend: TkAgg

In [1]: a=3

In [2]: a+1
Out[2]: 4

In [3]:

← 1

prompt
user input

ipython output

In [3]: %whos
Variable Type Data/Info

a int 3

In [4]: !pwd
/home/lfini/Personale/CorsiSeminari/2019-Python

← 2

← 3

1 The –pylab option preloads numpy and
matplotlib in ipython

2 %whos: magic command - list currently
defined variables

3 !pwd: external shell command

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 31

$ ipython --pylab
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.3.0 -- An enhanced Interactive Python. Type ’?’ for help.
Using matplotlib backend: TkAgg

In [1]: a=3

In [2]: a+1
Out[2]: 4

In [3]:

← 1

prompt
user input

ipython output

In [3]: %whos
Variable Type Data/Info

a int 3

In [4]: !pwd
/home/lfini/Personale/CorsiSeminari/2019-Python

← 2

← 3

1 The –pylab option preloads numpy and
matplotlib in ipython

2 %whos: magic command - list currently
defined variables

3 !pwd: external shell command

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 31

$ ipython --pylab
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.3.0 -- An enhanced Interactive Python. Type ’?’ for help.
Using matplotlib backend: TkAgg

In [1]: a=3

In [2]: a+1
Out[2]: 4

In [3]:

← 1

prompt
user input

ipython output

In [3]: %whos
Variable Type Data/Info

a int 3

In [4]: !pwd
/home/lfini/Personale/CorsiSeminari/2019-Python

← 2

← 3

1 The –pylab option preloads numpy and
matplotlib in ipython

2 %whos: magic command - list currently
defined variables

3 !pwd: external shell command

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 31

$ ipython --pylab
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.3.0 -- An enhanced Interactive Python. Type ’?’ for help.
Using matplotlib backend: TkAgg

In [1]: a=3

In [2]: a+1
Out[2]: 4

In [3]:

← 1

prompt
user input

ipython output

In [3]: %whos
Variable Type Data/Info

a int 3

In [4]: !pwd
/home/lfini/Personale/CorsiSeminari/2019-Python

← 2

← 3

1 The –pylab option preloads numpy and
matplotlib in ipython

2 %whos: magic command - list currently
defined variables

3 !pwd: external shell command

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 31

$ ipython --pylab
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
Type ’copyright’, ’credits’ or ’license’ for more information
IPython 7.3.0 -- An enhanced Interactive Python. Type ’?’ for help.
Using matplotlib backend: TkAgg

In [1]: a=3

In [2]: a+1
Out[2]: 4

In [3]:

← 1

prompt
user input

ipython output

In [3]: %whos
Variable Type Data/Info

a int 3

In [4]: !pwd
/home/lfini/Personale/CorsiSeminari/2019-Python

← 2

← 3

1 The –pylab option preloads numpy and
matplotlib in ipython

2 %whos: magic command - list currently
defined variables

3 !pwd: external shell command

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 32

In [5]: ?np.max

Signature: np.max(a, axis=None, out=None, keepdims=<class ’numpy._globals._NoValue’>)
Docstring:
Return the maximum of an array or maximum along an axis.

Parameters

a : array_like
Input data.

axis : None or int or tuple of ints, optional
Axis or axes along which to operate. By default, flattened input is
used.
...

In [6]: ??np.max
...
...

← 1,2

← 3

1 The package numpy is imported under the
name np

2 ?: provides info about an object
3 ??: provides more info (includes source code)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 32

In [5]: ?np.max

Signature: np.max(a, axis=None, out=None, keepdims=<class ’numpy._globals._NoValue’>)
Docstring:
Return the maximum of an array or maximum along an axis.

Parameters

a : array_like
Input data.

axis : None or int or tuple of ints, optional
Axis or axes along which to operate. By default, flattened input is
used.
...

In [6]: ??np.max
...
...

← 1,2

← 3

1 The package numpy is imported under the
name np

2 ?: provides info about an object
3 ??: provides more info (includes source code)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 32

In [5]: ?np.max

Signature: np.max(a, axis=None, out=None, keepdims=<class ’numpy._globals._NoValue’>)
Docstring:
Return the maximum of an array or maximum along an axis.

Parameters

a : array_like
Input data.

axis : None or int or tuple of ints, optional
Axis or axes along which to operate. By default, flattened input is
used.
...

In [6]: ??np.max
...
...

← 1,2

← 3

1 The package numpy is imported under the
name np

2 ?: provides info about an object
3 ??: provides more info (includes source code)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 32

In [5]: ?np.max

Signature: np.max(a, axis=None, out=None, keepdims=<class ’numpy._globals._NoValue’>)
Docstring:
Return the maximum of an array or maximum along an axis.

Parameters

a : array_like
Input data.

axis : None or int or tuple of ints, optional
Axis or axes along which to operate. By default, flattened input is
used.
...

In [6]: ??np.max
...
...

← 1,2

← 3

1 The package numpy is imported under the
name np

2 ?: provides info about an object

3 ??: provides more info (includes source code)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 32

In [5]: ?np.max

Signature: np.max(a, axis=None, out=None, keepdims=<class ’numpy._globals._NoValue’>)
Docstring:
Return the maximum of an array or maximum along an axis.

Parameters

a : array_like
Input data.

axis : None or int or tuple of ints, optional
Axis or axes along which to operate. By default, flattened input is
used.
...

In [6]: ??np.max
...
...

← 1,2

← 3

1 The package numpy is imported under the
name np

2 ?: provides info about an object
3 ??: provides more info (includes source code)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

IPython -2
Introduction III- 32

In [5]: ?np.max

Signature: np.max(a, axis=None, out=None, keepdims=<class ’numpy._globals._NoValue’>)
Docstring:
Return the maximum of an array or maximum along an axis.

Parameters

a : array_like
Input data.

axis : None or int or tuple of ints, optional
Axis or axes along which to operate. By default, flattened input is
used.
...

In [6]: ??np.max
...
...

← 1,2

← 3

1 The package numpy is imported under the
name np

2 ?: provides info about an object
3 ??: provides more info (includes source code)

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Python scientific packages
Introduction III - 33

Scientific packages are usually not
installed by default.

Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Python scientific packages
Introduction III - 33

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:

ipython, numpy, scipy, matplotlib
Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Python scientific packages
Introduction III - 33

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.

astropy:
Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Python scientific packages
Introduction III - 33

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.

astroquery:
Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Python scientific packages
Introduction III - 33

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

→

Introduction to Python - III L. Fini, Novembre-dicembre 2020

Python scientific packages
Introduction III - 33

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

→
Introduction to Python - III L. Fini, Novembre-dicembre 2020

The End

End of Part III

Introduction to Python - III L. Fini, Novembre-dicembre 2020

