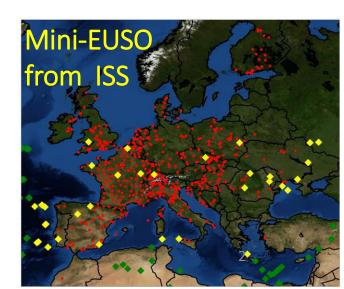
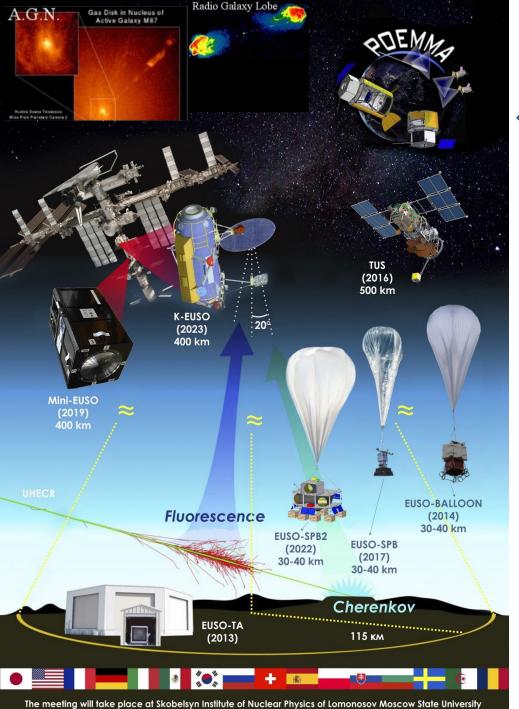
JEM-EUSO: Joint Experiment Missions for Extreme Universe Space Observatory

L'osservazione di meteore con l'esperimento Mini-EUSO a bordo della Stazione Spaziale Internazionale

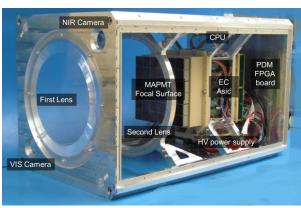
e le sinergie con la rete PRISMA...

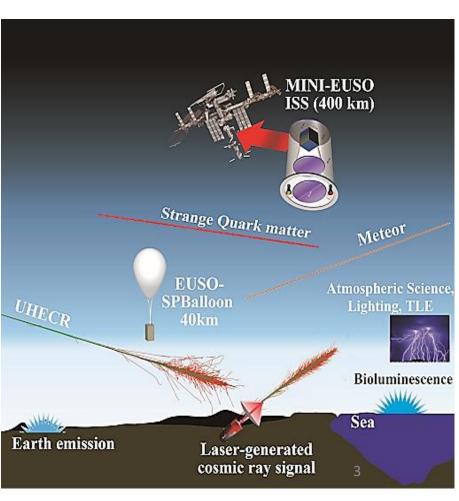
D. Barghini, M. Bertaina, S. Bertone, F. Bisconti, A. Cellino, D. Gardiol, H. Miyamoto, F. Reynaud (Univ. Torino & INAF-OATo) on behalf of the JEM-EUSO Collaboration PRISMA day 10-11 Dicembre 2020


Mini-EUSO & PRISMA a sinergy from the beginning



- PRISMA Day Firenze 2016: M. Bertaina «Mini-EUSO e attivita' correlate all'osservazione di Meteore e Space Debris in associazione con PRISMA»
- PRISMA Day Bologna 2018: F. Bisconti «Osservazioni con l'Engineering model di Mini-EUSO e la camera PRISMA all'INAF-OATo»
- PRISMA DAY 2020: M. Bertaina «L'osservazione di meteore con l'esperimento Mini-EUSO a bordo della Stazione Spaziale Internazionale




JEM-EUSO Program: observation of Extreme Energy Cosmic Rays (E>5x10¹⁹ eV) from space

Mini-EUSO: precursor mission with several scientific

objectives

Mini-EUSO on the ISS

Launch 22/08/2019

Mini-EUSO operated ~2/month for ~12h. Data are transferred to ground with ISS crew **once/year**. At the moment ~30h of night data available for analysis. Uv transparent window, Zvezda module, International Space Station

Beyond mission & outreach

Also in Russia a certain success:

@ Tor Vergata with FM Mini-EUSO

Video of Outreach from ISS https://www.youtube.com/watch?v=QincAp4V-SM&t=1s

16 SETTEMBRE 2019

Video ofioutreach on Corriere della sera

https://video.corriere.it/cronaca/mini-euso-luca-parmitanoprotagonista-web-serie-beyond/2582bd90-aa06-11e9-a88cfde1fa123548

Mentioned in the teleconference with Presid. Mattarella https://www.youtube.com/watch?v=NMTTSB6BVaw (min 5:15-6:30)

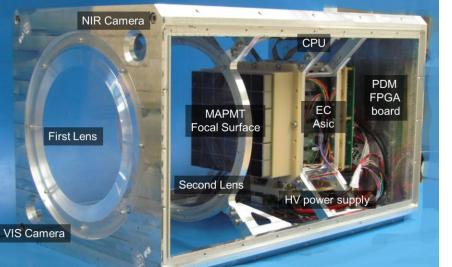
and Prime Minister Conte:

https://www.youtube.com/watch?v=4GDgpyAsz94 (min 16:51 - 19:15)

https://www.youtube.com/watch?v=lXedBGVHc4o&t=62s

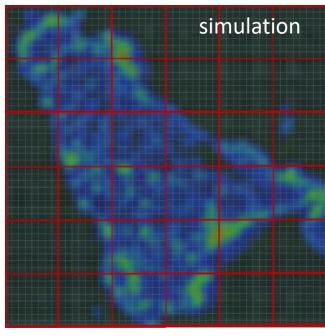
Using the wide-angle UV emission detector, we conducted an #experiment 'UV Atmosphere'. It is aimed to get the atmosphere nocturnal glowing in the close UV wavelength.

This new experiment has its advantages: detector high light ratio and high time resolution (microseconds).


6:21 PM · Jun 29, 2020 · Twitter Web App

MINI-EUSO / UV-Atmosfera

Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory



- Detector: dimensions of 36 x 36 x 62 cm³, two Fresnel lenses (25 cm of diameter)
- The light focuses on 36 multi-anode photomultiplier tubes (MAPMTs)
- Focal surface of 2304 pixels
- Field of view of 44°
- Spatial resolution on ground ~ 6.5 km/pixel
- Bandwidth: 300 400 nm

- Acquisition logic with 3 times resolutions:
- D1= 2.5 $\mu s,$ D2=320 μs and D3 =41 ms ,
- 1 packet = 128 frames or Gate Time Unit (GTU)
- D1 and D2 are self triggered (4 packets/5.24s), D3 is a continuous video stream.

Instantaneous FoV

Mini-EUSO Flight & Engineer Models

FM

EM

Tests at INAF-OATo

Stars

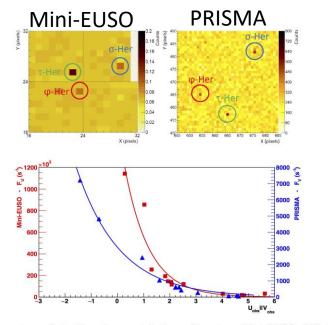


Figure 8: Three stars of the Hercules constellation. Stars in a Mini-EUSO EM data frame, integrated over 40.96 ms (top-left). Same stars in an image of the PRISMA camera, integrated over 5 s (top-right). The images have to be mirrored and rotated by a few degrees to have the same orientation. Flux of counts from stars and Jupiter for the Mini-EUSO EM (left y-axis) and for the PRISMA camera (right y-axis), with respect to the U (for the Mini-EUSO EM) and V (for PRISMA) apparent magnitudes (bottom).

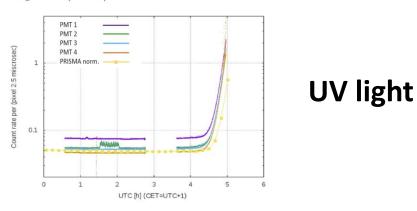
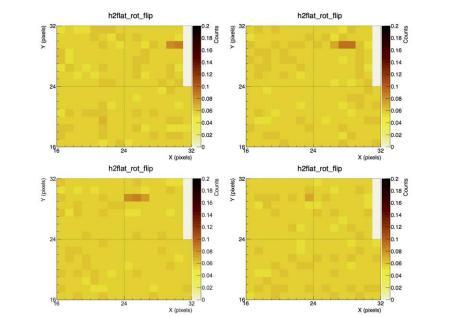
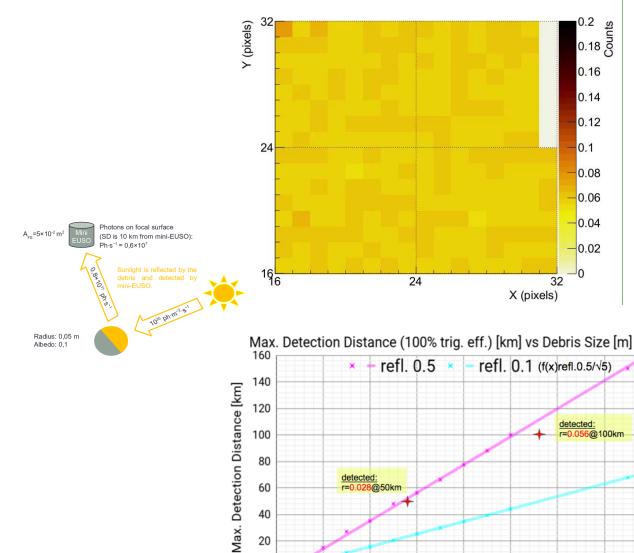



Figure 10: Background count rate over time of the four MAPMTs of the Mini-EUSO EM and of the PRISMA camera, normalized to the mean value of the three MAPMTs with lower counts.

Meteors


Figure 9: Example of meteor event shown in four consecutive D3 data frames, each integrated over 40.96 ms.

0.40 0.30 0.30 0.25 0.20 0.15 21:54:35 21:54:30 21:54:35 21:54:55 21:55:00 21:55:05

Airplane

Figure 13: Airplane for the flight LH1902 detected on March 12, 2018 in the time interval 21:54:27-21:55:12 UTC. In the top panel, peaks from four separate MAPMTs are shown. In the bottom panel, peaks from the whole EC are shown: the frequency of the visible flashes changes over the time due to the turning of the airplane while approaching the runway.

Satellite detected!

40

20 0 0

0.01

0.02

0.03

0.04

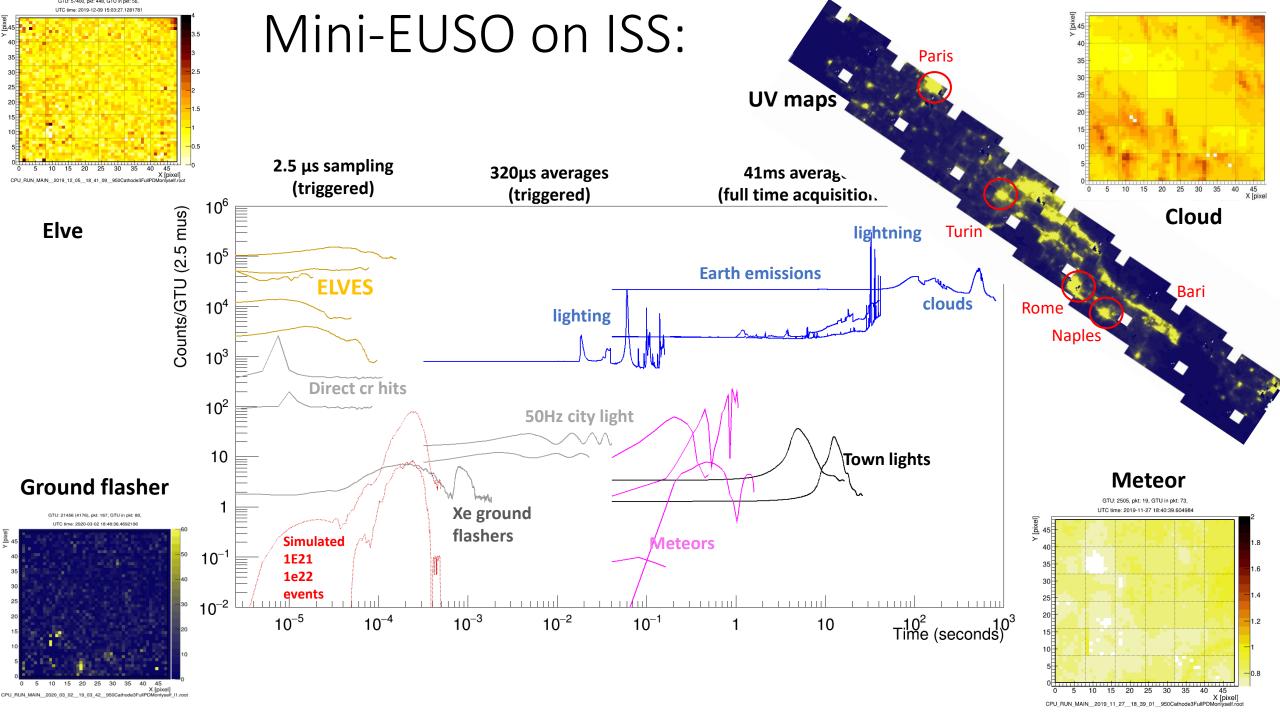
Debris Size (Radius) [m]

0.05

0.06

0.07

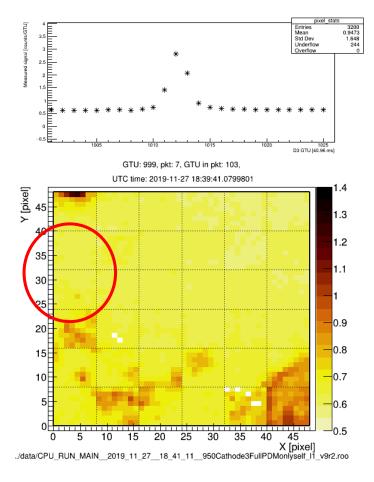
0.08

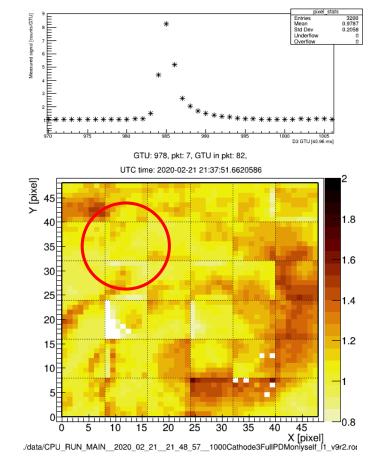

- In the animation: 1 frame every 10 D3 GTUs (409.6 ms)
- In the FOV for 400 GTUs (182 D3 GTUs in the first PMT, 4 173 D3 GTUs in the second PMT, 45 D3 GTUs not visible), for a total of 16.4s.
- Consistent with a satellite ş

Identified as Meteor 1-31 rocket, also known as SL-3 \rightarrow R/B, NORAD: 12586.

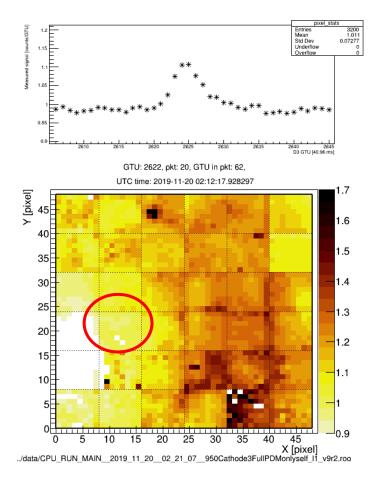
Name:	Meteor 1-31 Rocket					
Dimensions:	2.8 m x 2.6 m, cylindrical					
Brightness:	5.0 mag (at 1000 km, 50% illuminated)					
	2.8 mag (at perigee, full illumination)					
	Mean magnitude from visual observations					
RCS:	7.1m ² (Radar cross section)					
USSPACECOM Nr:	12586 Internat. Designator: 1981-065B					
Orbit:	519.4 x 545.5 km, 95.3min Inclination: 97.5°					
Age Elements:	賽 0 days					

Rescaling satellite to Mini-EUSO sensitivity plot

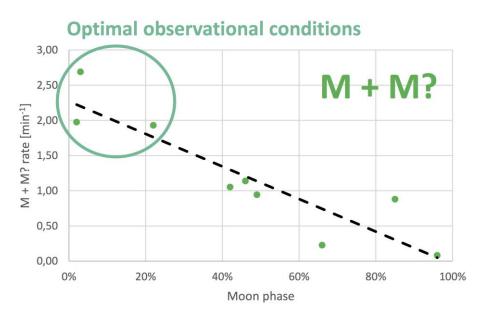

	Sat. Meteor 1-31 Rocket	scale to SD	scale to SD + lens 2.5cm → 25cm	scale to SD	scale to SD + lens 2.5cm → 25cm
distance[km]	530	50	50	100	100
Dimension [mxm]	2.8 x 2.6	0.27 x 0.25	0.085 x 0.08	0.53 x 0.49	0.17 x 0.16
RCS[m^2]	7.1	0.063	0.02011	0.25	0.08
corr. SD radius[m]	1.50	0.14	0.028	0.28	0.056
magnitude/ full	5/2.8				


Meteors in Mini-EUSO:

- automatic offline search & analysis: 1152 events


- offline trigger & visual inspection: 1545 M + 819 M? in 1967 min. of analysis

Session 06, 27/11/2019, 18:41:11 UTC Andaman sea (near Thailand)



Session 11, 21/02/2020, 21:48:57 UTC Indian Ocean

Session 05, 19/11/2019, 02:21:07 UTC North Atlantic Ocean

Flux and Limiting magnitude

Observed rate at best conditions: 2.0 – 2.5 ev/min

Expected rate at +5 absolute magnitude: 2.4 ev/min

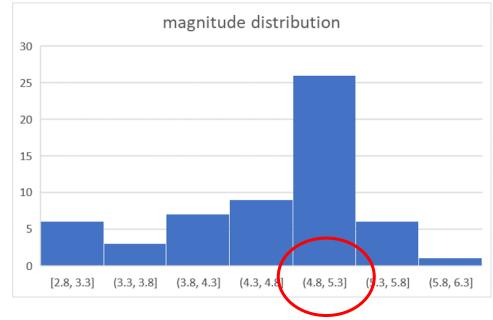
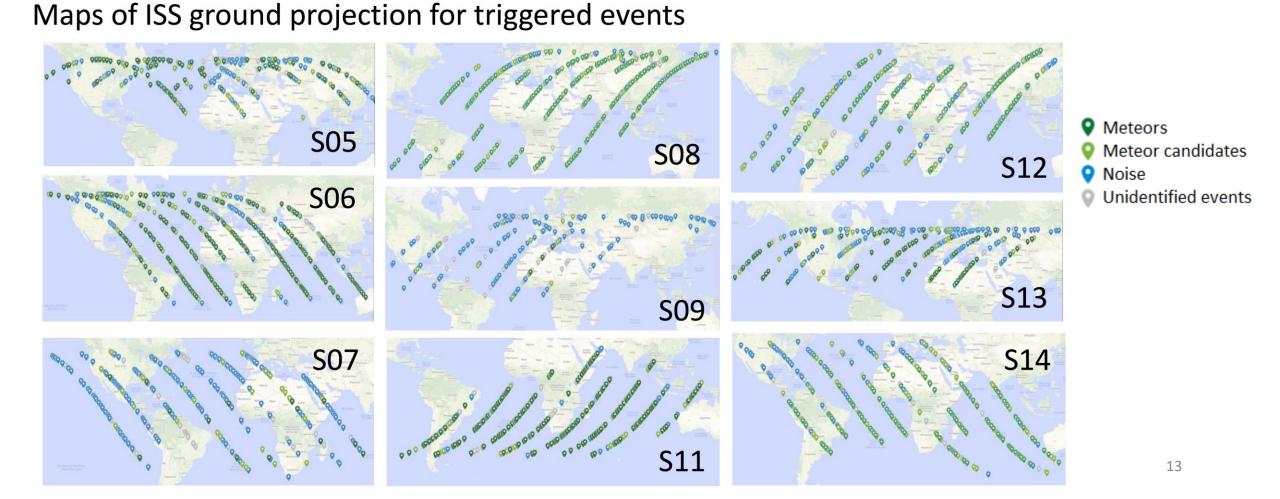

G. Abdellaoui et al. (JEM-EUSO Coll.) Planetary and Space Science 143 (2017) 245–255

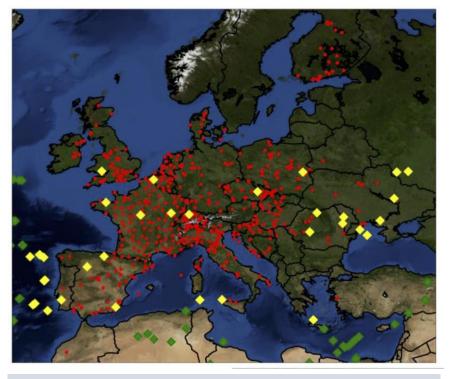
Table 1

For different values of absolute magnitude in visible light, the Table lists the corresponding flux in the *U*-band (according to the Flux Density Converter of the Spitzer Science Center available at web site http://ssc.spitzer.caltech.edu/warmmission/propkit/pet/magtojy/index.html), the corresponding numbers of photons per second (assuming that the meteor is located at a height of 100 km and is observed by the ISS in the nadir direction), and the corresponding number of photo-electrons per GTU, for the cases of JEM-EUSO and Mini-Euso, respectively. The corresponding typical mass of the meteor, and the number of events expected to be observed by JEM-EUSO (by assuming a duty cycle of 0.2) and by Mini-EUSO are also shown. The relationship between mass and magnitude has been obtained following Robertson and Ayers (1968).

Abs. mag	U-band flux (erg/s/cm ² /A)	photons (s ⁻¹)	photo-e ⁻ GTU ⁻¹ (JEM)	photo-e ⁻ GTU ⁻¹ (Mini)	mass (g)	event rate (JEM)	event rate (Mini)
+7	$6.7 \cdot 10^{-12}$	4.3·10 ⁷	4	0.04	$2 \cdot 10^{-3}$	1/s	0.4/s
+5	$4.2 \cdot 10^{-11}$	$2.7 \cdot 10^8$	23	0.23	10^{-2}	6/min	2.4/min
0	4.2·10 ⁻⁹	$2.7 \cdot 10^{10}$	2300	23	1	0.27/orbit	0.11/orbit
-5	4.2·10 ⁻⁷	$2.7 \cdot 10^{12}$	2.3·10 ⁵	2300	100	6.3/year	2.5/year

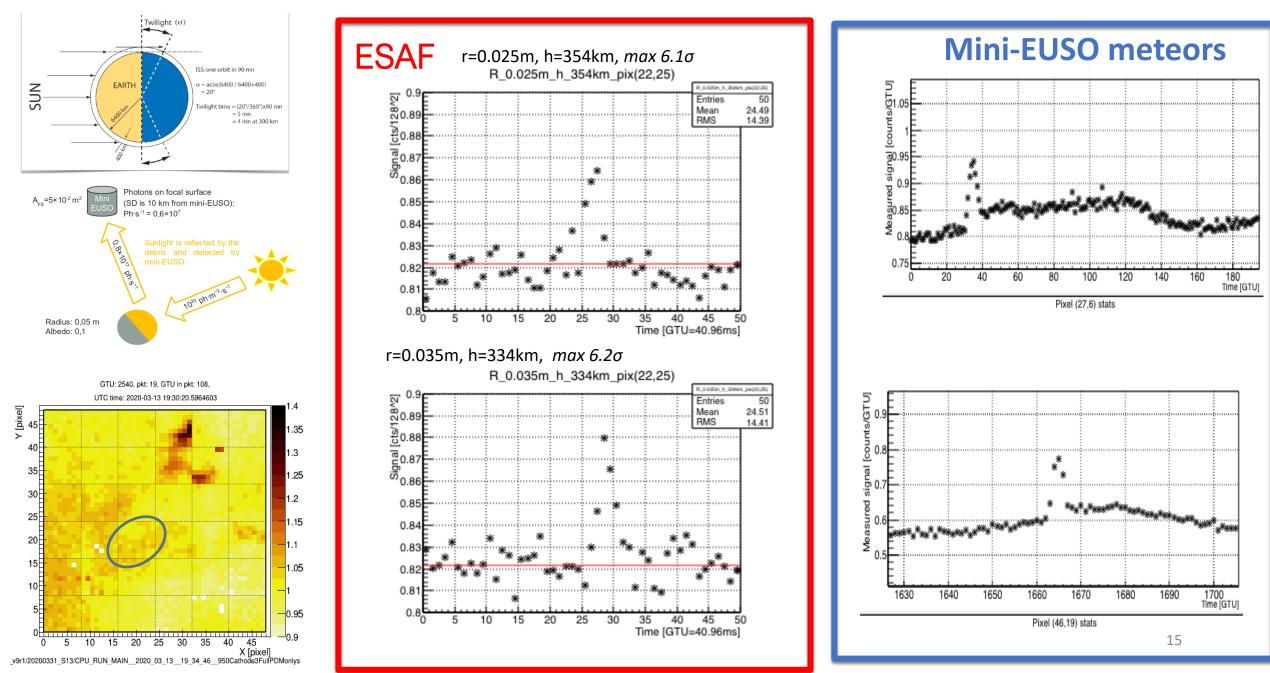

PRELIMINARY

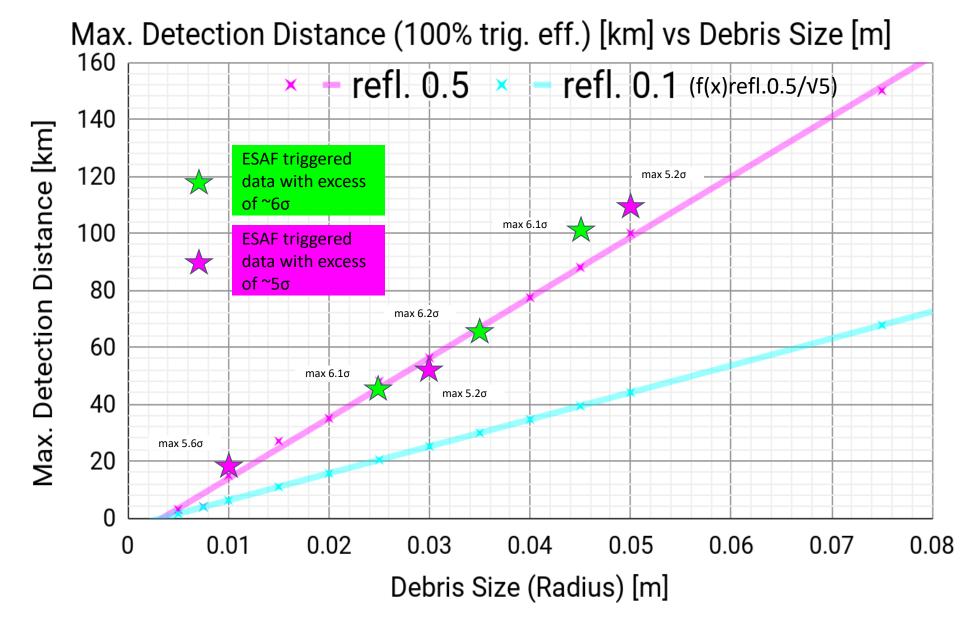
With a crude estimation of Mini-EUSO efficiency of 8%, and by using a subset of faint events the distribution peaks is in a range of magnitude values of [+4.8,+5.3]


Maps:

- Most of the meteors are detected where the background is lower
- The false positives rate is higher over continents

Correlation with ground sources (130 ev. with d < 400 km from a ground station around the world)




Red dots: ground networks Yellow diamonds: ISS position at M event Green diamonds: position of M event

- 2 M in FoV of Palermo PRISMA camera: NO counterpart
- 3 M in FoV FRIPON network: still to be checked 14

Comparison with expected SD signals according to ESAF

ESAF Simulation results + Mini-EUSO data

CONFIRMATION WITH Mini-EUSO METEOR DATA OF THE EXPECTED SENSITIVITY TO SD

Conclusions:

- Mini-EUSO is on ISS and takes data 2/month.
- Mini-EUSO detects events of different nature according to expectations.
- Thousands of meteor events to be analysed.
- Preliminary estimation of sensitivity to meteors in agreement with simulations.
- Detailed data analysis in process.
- We look forward to have events detected in correlation with PRISMA, we got close but not lucky yet.
- The meteor study is important also for detection of space debris.

THANK YOU