

ELT Instrument control software framework Development status and future challenges.

TETIS Workshop October 29th 2020 Mario Kiekebusch on behalf the development team, ESO

Overview

- Project Status & Planning
- Software Engineering
- Summary

Overview

TETIS Workshop – 28/10/2020

Future ELT/VLT Instruments

ELT

- > HARMONI
- MICADO and MAORY
- > METIS
- > HIRES
- > MOSAIC
- ≻ PCS

VLT

- FORSUP
- > MAVIS
- > CUBES

Definition

- The ELT Instrument Control Software Framework (IFW) is a toolkit aimed to help instrument developers implementing the control software for their instruments.
- The IFW reuses the proven architectural and design patterns from the VLT instrument framework but is implemented using the new technologies defined by the ELT development standards.
- The IFW implement generic solutions that can be configured and extended for each application.

ELT Control SW

Technologies

PLCs:

- Industrial standard widely used. Solving many of the control needs of instruments.
- Supports multiples fieldbus protocols (EtherCAT, serial, canbus, ethernet, etc.)
- Development Environment: MS Visual Studio and TwinCAT
- Programming Languages: Structured Text (ST) and C++
- Communication Interface OPC-UA.
 - Remote Procedure Calls
 - Read/Write and subscriptions

Technologies

- WS part
 - Server:
 - Dell M8xx Blade chassis, (IT Standards, TBD).
 - OS: Linux (CentOS 7.6)
 - Programming Language: C++17 and Python.
 - Python Binding: pybind11
 - Middleware: ZMQ
 - Graphical Interfaces: Qt
- Testing Frameworks: Google Unit Tests, Robot Framework.
- PTP time protocol

Technologies

Redis DB

Nomad

Nomad is a flexible deployment tool used normally in data centers.

Nix

A powerful package manager for Linux and other Unix systems that makes package management reliable and reproducible.

Existing IFW components (V2)

Application Framework (RAD)

Enables the development of event-driven applications based on call-backs and state machines.

Test Framework (ETR)

Standardizes the way to set up and execute tests using existing test runners.

Core Libraries (CDT and DIT)

General purpose libraries.

Function Control Framework (FCF)

controls and monitor instrument hardware functions and sensing systems.

Online Data Processing (ODP)

a simple component aiming to provide a data processing toolkit, flexible and well integrated with the Instrument Control Software.

Sequencer (SEQ)

A generic tool for the execution of Observation Blocks (OB) and engineering scripts.

- A generic tool for the execution of Observation Blocks (OB) and engineering scripts.
- Being implemented in Python. All scripts will be python scripts.
- Decouples execution engine from graphical tool.
- A template library will simplify the interface with subsystems.

Simple example of a sequencer script

```
import asyncio
from seqlib.nodes import Sequence, Action
def do_a():
    """An Action does not need to be a coroutine"""
    print("A")
async def do_b():
    """But coroutines are pretty neat"""
    await asyncio.sleep(1)
    print("B")
def create_sequence():
    """ Creates a simple sequence """
    return Sequence.create(
        Action (do_a, name="A"),
        do_b, # syntax sugar --- automagically converts to Action
        name="Tut_01",
```


Sequencer

ence B art pl.c pl.b pl.a	16: start_seq 1: Sequence 5: TPL_B_R8Y 20: start_TPL 8: Tpl.c_JOJXP 7: Tpl.b_OYBXN	FINISHED FINISHED FINISHED FINISHED RUNNING
ence B art pl.c pl.b pl.a	1: Sequence 5: TPL_B_R8Y 20: start_TPL 8: Tpl.c_JOJXP 7: Tpl.b_OYBXN	FINISHED RUNNING FINISHED RUNNING
B art pl.c pl.b pl.a	5: TPL_B_R8Y 20: start_TPL 8: Tpl.c_JOJXP 7: Tpl.b_OYBXN	RUNNING FINISHED FINISHED RUNNING
pl.c i pl.b i pl.a i	20: start_TPL 8: Tpl.c_JOJXP 7: Tpl.b_OYBXN	FINISHED FINISHED RUNNING
pl.c (pl.b) pl.a (8: Tpl.c_jOJXP 7: Tpl.b_OYBXN	FINISHED RUNNING
ol.b ol.a (7: Tpl.b_OYBXN	RUNNING
ol.a (
	6: Tpl.a Z6Pq8	RUNNING
na ,	21: end TPL	SCHEDULED
ence 9	9: Sequence	SCHEDULED
art :	22: start Seg	0
	10: a VNwzB	0
	11: b YOWgY	0
nd 3	23: end Seg	0
ence 3	12: Sequenc	SCHEDULED
	17: end seg	SCHEDULED
B uence_N	7Dyjirgi6 1 Alim5aE0VD 4	
uence_q B_7D82 uence a	zEgW7r 5 ARm5gKA2p 9	
uence_q _B_7D82 uence_q uence_q Wrapper	zEgW7r 5 ARm5gKA2p 9 ARm5gODDR 12 m7Rg6z8x1A 1	2
FFFF	d ence xs 4 xs 2 xs 4 xs 1 A B	art 22: start_Seq 10: a VNw2B 11: b YQWqY d 23: end_Seq ance 12: Sequenc 17: end_seq ss 4 ss 1 A B

Function Control Framework

- A set of *PLC libraries* implementing the supported device controllers, simulators and their HMIs for local control.
- A *Device Manager* controlling a configurable number of devices from a standard ELT WS.
- A set of *Device Simulators* capable of emulating the behavior of a device controller and its interface within a WS.
- A generic *GUI* for the Device Manager that allow users to control devices graphically.

Function Control Framework

Function Control Framework

ates: NotOperational Initialising						
		💐 FreeOpcUa Clier	nt@eltdev26.hq.eso.org			
Iamp1 NotOperational 0 % ON Setup Ready/Off 0 0 secs Setup		File Commar	nds Settings	_		
		Device: d	rot1	States: <mark>NotOpe</mark>	erational Ready	<mark>.</mark>
nutter1 NotOperational OPEN * Ready/Close		URL:	opc.tcp:// Er	134.171.59.98:4840 ror:		
		Initialisation Statu		<u>Motor Status</u>		
or1 NotOperational -4.12 [uu] uu 🔹	sotup qui 👋	Step: 0		Actu	al Target	
Initialising -9086 [enc] 0.0	serup Street) Initiialised	Position: 0,0	30.0	uu
nt] NotOperation: -2.56 Juli uu * eng *		<u>A</u> xis Ststus			545450	
Initialising -31944 [enc] 0.0	Setup gui	Ready	Brake		os Error: 0.0	u
e: eng ra: 000039.9 dec: 890604.0) Enable			Velocity: <mark>0.0</mark>	uu/
		InPosition		Move in Position		
NotOperational motor1 motor2 uu eng		<u>S</u> witches status				
-3.90 -3.90 [uu]	Setup	C LStop	UStop 🔘	Position: 30.00	🗘 uu 🔻 Velo	ocity: 3.
-43 -43 [enc]		C LHW	UHW 🕤			
dec: 890347.0		U Rer		Move in Velocity	Move in Position	
		Full			√ F	Position N
sor1 Operational Monitoring						
	clear		60 40			
e 🔺 Type Command Parameters/	Reply	s,	20		t	COLORD COLORD
353 Request INIT {}		3	-20 -40		Δ hw	
.605 Reply_Success HWRESET OK			-60 -80			
2.406 Reply_Success INI Init command completed.			15:49:20.000000		15:49:30	.000000
				Position		
SETUP		30		1		
		20			start	

 \Box \times

- The DDT is a framework to implement quicklook tools for different data types.
- Is being implemented in Qt with python bindings.
- The DDT software is split into four major components
 - Data Transfer
 - Image Handling
 - Data Visualization
 - Python Components

19 💶 💵 🛏 🖬 💻 💵 🔳 🔳 🖬 💶 💷 💷 💷 🖿 💥 🛀

The DDT reference application (early version).

- Example of other data types.
- Actuator values are mapped to a pixel display which represents its physical shape.

Project Status & Planning

TETIS Workshop – 28/10/2020

Timeline

start IFN	evelopment	FN	ersion	Jersion 2
Jun 16	Apr 17	May 19	May 20	
Prototyping work wtools / DevEnv	Requirements, development	esign and software	Software development CII integration	

- 4 years of development
- 12 FTEs spent.
- More than 100k lines of code

Status & Planning

	2019	2020	2021	2022	2023	2024
	30/05	30/05	30/05	30/05	30/05	30/05
Application Framework	V1	V2	V3	V4	V5	V6
Function Control Framework	V1	V2	V3	V4	V5	V6
Widget Library			V1	V2	V3	V4
Observation Coordination Framework			V1	V2	V3	V4
Camera Control Framework			V1	V2	V3	V4
Data Display Tool		delayed	V1	V2	V3	V4
Sequencer		А	V2	V3	V4	V5
Template Library			V1	V2	V3	V4
Calibration Framework					V1	V2
Online Data Processing		А	V1	V2	V3	V4
Test Framework	V1	V2	V3	V4	V5	V6
Miscellaneous Libraries	V1	V2	V3	V4	V5	V6

Software Engineering Process

TETIS Workshop – 28/10/2020

Development Process

Work is based on well defined iterations called sprints.

Stories are the features of the system to be implemented.

Backlog is the repository of features (stories)

TETIS Workshop - 28/10/2020

Development Process

27

TETIS Workshop - 28/10/2020

Test & Verification

Set of Jenkins Pipelines

- CI Pipeline (build + execution of unit tests)
- CI Pipeline of DevEnv beta
- Integration Pipeline (build + unit tests + integration tests)
- Daily IFW documentation (build + doxygen & sphinx)
- Daily and Weekly IFW statistics (SLOC, static analysis, code coverage)
- Daily and Weekly IFW valgrind

Test & Verification

Simulation of hardware devices.

- Simulators can be controlled externally to emulate certain behavior on demand.
- Test Instrument with hardware devices.
- Deployment in other test facilities, e.g. MELT

Release Management

Major release lifecycle

- One major version will be released per year, following the IFW Release Plan.
- > Unstable versions might be created at the end of a sprint.

Release Management

Patch release lifecycle

A patch release can also be created when urgent bugs need to be fixed in a previous release delivered to externals.

User Support

- IFW problems reported in existing JIRA project for instrument follow-up.
- This allows a filtering process and a more dedicated effort from follow-up team to deliver the answers to Consortia.

- ESO will continue developing the IFW according to its development plan.
- IFW started to be used by instrument developers specially to control hardware devices.
- A significant work is ahead to adapt to CII services.
- DDT is delayed but first version is expected for next IFW version. An alpha version may be made available in December.