

Present, past and future of the development of the control software for the Italian radio telescopes

Sergio Poppi on behalf of the DISCOS team

DISCOS Team

- Andrea Orlati (INAF IRA): team leader project manager core developer
- Carlo Migoni (INAF Cagliari): core developer, VLBI integration.
- Marco Buttu (INAF Cagliari): core developer, test driven development.
- **Giuseppe Carboni (INAF Cagliari):** simulators, continuous integration.
- Simona Righini (INAF IRA): astronomical advisor, observations, documentation.
- Antonietta Fara (INAF Cagliari): system administrator.
- Sergio Poppi (INAF Cagliari): core developer, astronomical advisor, observations
 - Many contributions over the time
 M.Bartolini, F.Palagi, G.Maccaferri, M.Murgia,
 F.Schilliro', M. De Biaggi

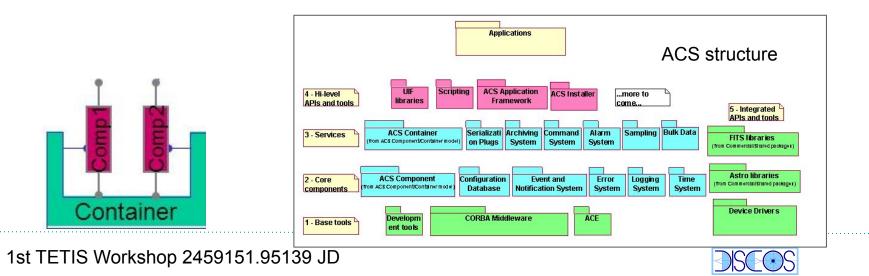
Project History

- 2004 Development SRT Control Software NURAGHE started
 - team: Giuseppe Maccaferri, Andrea Orlati, Francesco Palagi, Carlo Migoni, Matteo Murgia, Francesco Schillirò (GAI SOFTWARE - SRT)
 - Goal:
 - Provide the Sardinia Radio Telescope of control software with enhanced performances.
 - Build a common infrastructure for the three radio telescopes.
- 2007 ESCS Enhanced Single-dish Control System (Medicina and Noto)
 - team: GAI SOFTWARE + Simona Righini, Rashmi Verma, P.Libardi
- 2015 DISCOS: unifies the three development lines.
- 2018 INAF UTG-II endorsement

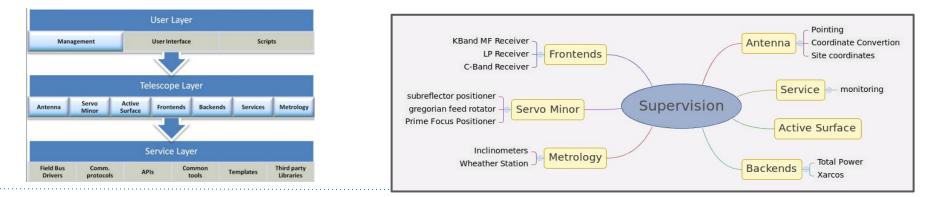
Telescopes Configurations

	SRT	Medicina	Noto	
Main mirror	64 m	32 m	32 m	
Optical configuration	Gregorian	Cassegrain	Cassegrain	
Mount	Altazimuthal, fully steerable 12 motors + cable wrap	Altazimuthal, fully steerable 4 motors	Altazimuthal, fully steerable 4 motors	
Antenna Control Unit	Beckhoff PLC	VxWorks based PC	VxWorks based PC	
(main servo system)	ethernet vendor protocol	ethernet vendor protocol	ethernet vendor protocol	
Primary Focus	three degrees of freedom INAF defined protocol	freedom three degrees of freedom		
Secondary Focus	six degrees of freedom ethernet INAF protocol	five degrees of freedom ethernet INAF protocol	five degrees of freedom RS232 vendor protocol	
Active Surface	1008 aluminium panels 1116 actuators rs485/ethernet vendor protocol	not available	240 aluminium panels 244 actuators rs232 vendor protocol	

Telescopes Configurations

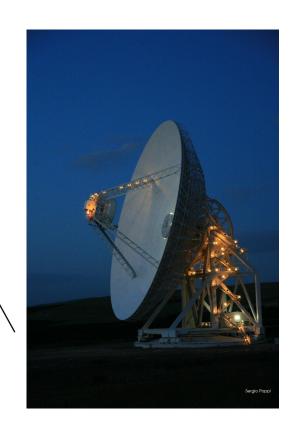

	SRT	Medicina	Noto	
Main mirror	64 m	32 m	32 m	
Receivers *	0.305-0.410	1.35-1.45	0.317-0.320	
	1.3-1.8	1.595-1.715	1.40-1.72	
	5.7-7.7	2.2-2.36	2.20-2.36	
	18.0-26.0, 7 feeds	4.30-5.80	4.70-5.05	
	GPIB and ethernet	5.90-7.10	8.18-8.58	
	INAF protocol	8.18-8.98	22.18-22.46	
		18.0-26.0, 2 feeds	39.0-43.3	
		GPIB and ethernet and RS232	GPIB and RS232	
		various protocols	various protocols	
Backends*	TotalPower (continuum)	TotalPower (continuum)	TotalPower (continuum)	
	0.1-2.1, 1-1000 ms, 14 inputs	0.1-2.1, 1-1000 ms, 4 inputs	0.1-2.1, 1 ms, 4 inputs	
	XARCOS (spectro-polarimetry)	XARCOS (spectro-polarimetry)	DBBC	
	0.0005-0.125, 10 s, 2048 bins, 14	0.0005-0.125, 10 s, 2048 bins, 14		
	inputs	inputs		
	SARDARA(spectro-polarimetry)			
	1500MHz, 10-1000 ms,16384 bins, up			
	to 14 inputs			
	DFB3(pulsar)			
	1.024, 1-4000 ms, 8192 bins, 4 inputs			
	DBBC			

DISCOS framework


- Applications based on ALMA Common Software
 - Distributed objects architecture
 - ACS component as the basic unit which performs tasks
 - Components expose interfaces to other components.

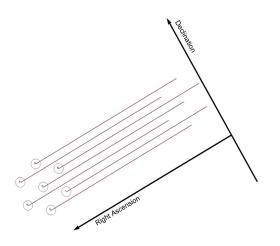
DISCOS Design

- **Common** interfaces design for the three telescopes
- Components organised in subsystems
- Each subsystem has a "boss" component, which has in charge the communications inward and outward the subsystem


What the control software must do?

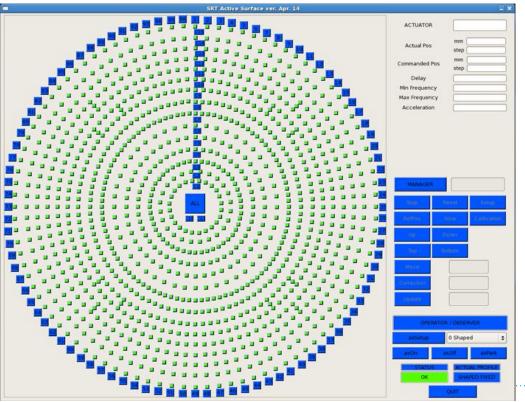
DISCOS

It drives the telescope...


- The antenna control unit needs time tagged azimuth and elevation coordinates
 - The antenna subsystem computes t-tagged coordinates to perform scanning strategies:
 - Sidereal tracking
 - OTF in equatorial, horizontal, and galactic coordinate system
 - Spectroscopy mode strategies:
 - Position switching
 - Nodding
 - Raster mapping

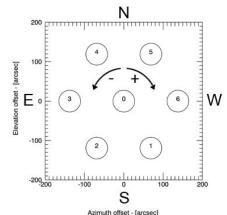
Observing modes

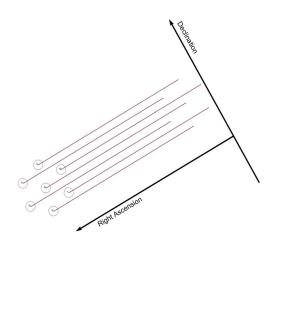
- Observing modes are:
 - Sidereal tracking (pulsars and VLBI)
 - On-the-fly Mapping or scanning (continuum, spectropolarimetry)
 - Spectroscopy mode strategies:
 - Position switching
 - Nodding
 - Raster mapping
- Italian radio telescopes are versatile instruments for different scientific cases


It set the receivers in the right focal position...

- The minor servo subsystem:
- Set the chosen receiver into it focal position
- Drives the subreflector tracking the best focus as the elevation changes

It allows the primary mirror to be in "good shape"


• The AS subsys set each of the 1116 actuators to its elongation for commanded elevation



SRT

It derotates multifeeds

- The Multifeed K-band receiver hosts an hardware derotator to follow the parallactic angle
- If needed, it rotates the receiver following the paralactic angle

Allows data acquisition with housekeeping infos!!!

- Data ara acquired by digital backends (total power, ROACH2 based BE) at high sampling rate (down to 10 ms)
- Housekeeping ancillary infos are mandatory. For each sample there are
 - o Data
 - Timestamp
 - Pointing coordinates
 - Weather parameters
 - Goodness of the sample (all the subsystem where working correctly?)

What if the sample rate is one sample every 10 ms?

Discos must continuously

- 1. Check that the telescope, at time t, is at the right position
- 2. Check each device, at time t, is at the right position
- 3. Save the acquired data each 10 ms, together with a status flag (1 if all the check are ok) together with the all the other HK parameters

• Synchronism is critical

Another Critical point: data rate!

- Totalpower BE produces MAX 64 KB/s
- SARDARA ROACH2 BE (16384) produces 128 MB/s (7-beam mode 900 MB/s)

The data rate is close to the disk rate limit

Optimizing disk and filesystem is mandatory!

Are we facing BIG DATA problems?

User interfaces

+61:52:27,100 (000,0 Jy) LSRK 0P

000,0000

000,0000

000,000

152 809

052,6588

-02,2951 000,1381 000,0132 000,0134

28:13.757/+61:56:16.471/2015.43600

+61:52:27,277

01:03:54.516

: w3oh : +02:27:04.100/+61:52:27.100/2000.0 0.00 0.00 0.00 0.00

Text and QT based

+02:27:04.100

48,80000

000.0000

000,0000

000,0000

321 3150

323,6102

02:27:

: 133,9476/001,0650

133,9476/001,0650

: 323.6100/052.6584

133:56:

dial Velocit

erved Hori

served Equat.

served Galac

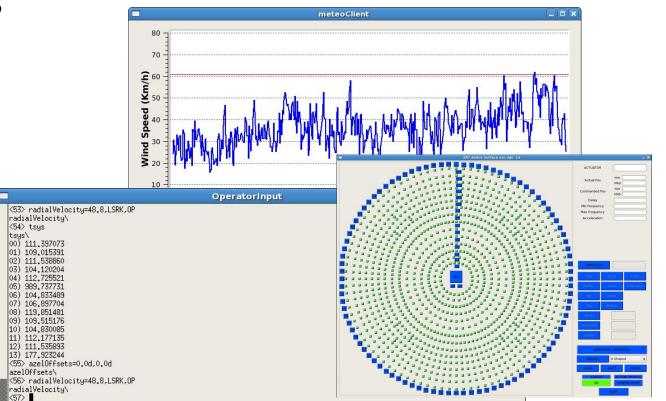
nerator Type

rr. az/el/ref

oriz. Offs

uat. Off

alac. Off

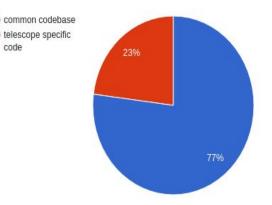

w Hori:

racking

Source name Catalog Eq. Catalog Gal

Apparent Eq. Galactic

Horizontal

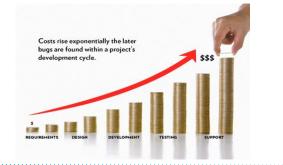


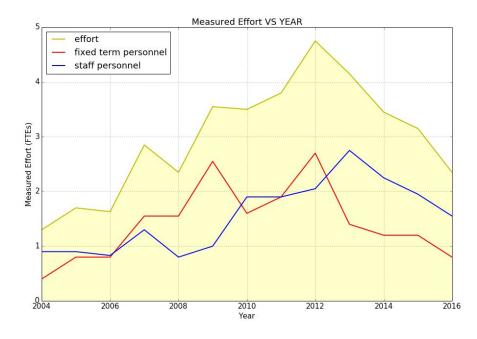
1st TETIS Workshop 2459151.95139 JD

DISCOS in a nutshell

- A common monolithic codebase (77%):
 - management (scheduling, observing modes)
 - subsystem bosses
 - user interfaces
 - libraries
- Specific code coping differences among telescopes

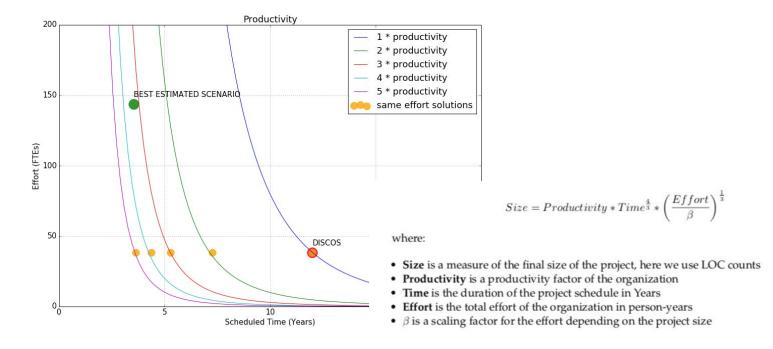
Lesson Learned - How big is Discos


Totals grouped by language (dominant language first):


cpp:	72.59%	Astropy Codebase Statistics	
xml:	16.26%	First commit date	25 July 2011
ansic: python:	5.84% 5.03%	Number of distinct contributors	191
sh:	0.25%	Number of commits	15,475
fortran:	0.03%	Lines of Python code Lines of Python code (core package)	200,295 125,737
perl:	0.00%	Lines of C code	13,957
		Lines of shell code	1,065
Total Physical Source Lines of Code		Total lines of code	215,317
(SLOC) = 533782 generated using David A. Wheeler's 'SLOCCount'. statistics by <u>www.openhub.net</u>		Development effort estimate (person-years)	56.33
		Schedule estimate	2.48 years with 22.72 developers
		Estimated cost	\$8,449,937

Lesson Learned - Costs analysis (2016)

Project	FTE	% of Project Costs
Alma	450	5.7
VLT	422	7.1
ASKAP	37	4.3
<u>SRT</u>	<u>39</u>	<u>2.8</u>

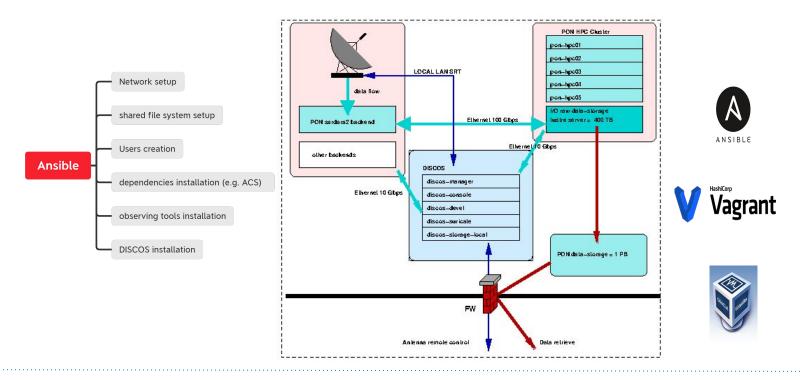


Total costs: around 1600 k€

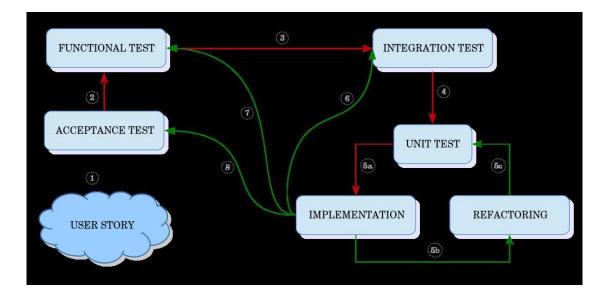
Lesson Learned - Cost in-effective planning

Lesson Learned - Design and Requirements

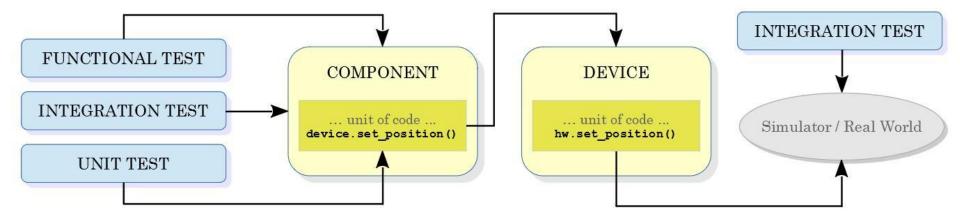
- 1. Speed up technology surveys in order to anticipate the start of the development.
- 2. The requirements from your stakeholders (i.e. astronomers and scientists) not well defined
- 3. Underestimate the technology progress during the years, see Big Data and data rates.
- 4. Code with poor test coverage
- 5. Delay the design and the development of your GUI to a later stage
- 6. Relaying on a framework is certainly a great benefit especially during development but, on the other hand, you lose control on a fundamental part of you application and you are anchored to technologies which tends to grow old rapidly


Lesson Learned - Drawbacks

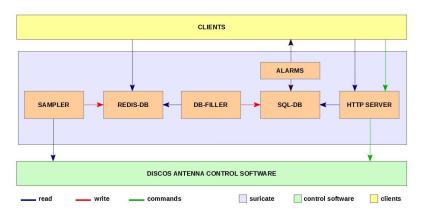
Automatic machines provisioning



Test driven development


• Development of new functionality will be test driven

Testing with Simulators


- Simulators provide a means to perform both high and low level offline tests
- Same tests should yield the same results with both simulators and hardware
- We can verify that the real hardware APIs behave as expected

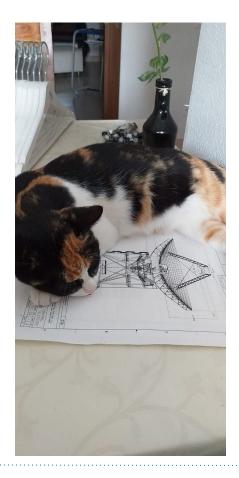
Suricate

- Handle communication inward and outward the CS
- Clients do not depend on the framework.

GQLAlchemy

Future/present

- Italian radiotelescopes will be upgraded within PON Research and Innovation 2014-2020 project "Potenziamento del Sardinia Radio Telescope per lo studio dell'Universo alle alte frequenze radio"
- New receivers will be installed:
 - cryogenic receiver in W Band for SRT (75-116 GHz)
 - cryogenic receiver in Q Band for SRT (33-50 GHz)
 - Millimetre camera for SRT (80-116 GHz)
 - triple-Band receiving system for the three Italian radio telescopes (18-26 ; 35-50; 85-116 GHz)
- Metrology: shape and structure deformations measure to have closed loop control of mirrors
- New backends/detectors


Questions?

See:

https://discos.readthedocs.io/en/latest/

https://github.com/discos

https://www.ict.inaf.it/gitlab/INAF/DISCOS

