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● ACS is a SW Technical Infrastructure for Control Systems.
● ACS provides the basic services for OO distributed computing.
● ACS is based on a Component/Container model
● Development started in 1999 for ALMA, as an open source project.
● ACS is still actively developed.
● ACS is used in a number of projects outside ALMA
● There is a community of users  contributing to the development.
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An observatory is a distributed system. 

Servers and clients are distributed on different machines:
Possibly in different locations
With different purpose and functionality
With different requirements on performance and reliability

Why a Technical Infrastructure?
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An observatory is a heterogeneous distributed system. 

Servers and clients may use different:
Hardware
System software
Programming languages

Even development is distributed

Why a Technical Infrastructure? (2)

5



Transparent heterogeneous distribution is desirable:
Application developers should be unaware of the underlying server 

architecture & vice-versa
 It should be possible to change the architecture of a server 

transparently to the client
Application developers should not even need to know whether a 

server is local or remote.

Why a Technical Infrastructure? (3)
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Separation of functional from technical concerns is a strategy for

enabling the application developer to focus on the specific 
aspects of the observatory 

minimizing the technical effort

Functional and Technical Architecture
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A Functional Software Architecture (FSA) is a model that identifies 
enterprise functions, interactions and corresponding information 
technology needs. 
Software components/subsystems

Responsibilities
 Interfaces
Primary relationships and interactions

Physics and algorithms

It is developed by architect and subsystem leaders

based on user requirements

Functional Architecture
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The functional architecture must be supported by a technical 
architecture that describes (and implements) the technical aspects of 
the software, like:
Programming model
Communication mechanisms and networking
Access to remote resources
Store and retrieve data (Database technology)
Manage security
Software deployment and life cycle

It is provided by the technical team
typically based on derived requirements

Technical Architecture
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The key to the separation between 
Functional and Technical Architecture

Purpose of a framework is to:

provide a programming model
ensure that the same thing is done in the same way in all the 

development locations
provide common paradigm abstractions
mask heterogeneity
 satisfy performance, reliability and security requirements

Infrastructure Framework
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All big projects have adopted an infrastructure framework
ACS in just one among several options, like
• ACS
• EPICS
• TANGO
• ESO VLT CCS
• ESO ELT CII
• ………

They are all rooted on the same basic principles described above.
They make specific technical choices and have an own history and a 
rationale for adopting any of them in a project, or to create a new one.

Which framework to chose?
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The ALMA Common Software (ACS) Framework

ACS provides the basic services needed for OO distributed computing. 
Among these:
Transparent remote object invocation
Object deployment and location based on container/component 

model
Distributed error and alarm handling
Distributed logging
Distributed events / publisher-subscriber
Configuration database

The ACS framework is based on CORBA and built on top of free 
CORBA implementations and services. 

Model driven development with code generation
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Supported Platforms

Operating system: 
RH Enterprise / Scientific Linux
CentOS
Other linux versions supported by external projects
Windows added also by external initiatives

Real-time: 
VxWorks supported by and for APEX

 Languages: C++, Java, Python
CORBA middleware: TAO (C++), JacORB (Java), Omniorb (Python), 

CORBA services.
Embedded ACS Container (Experimental)
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LGPL and open source software

The strategy to provide common features to users is:
 Integrate as much as possible open-source tools, instead of implementing things. 

 Do not reinvent the wheel
 Reuse experience of other projects
 Do not pay for licenses
 Support from user community

 Identify the best way to perform a task among the  possibilities
 Wrap with convenience and unifying APIs

ACS is distributed under the LGPL license
Open source software may have drawbacks:

 Fast lifecycle and support only of the newest
 Free/commercial support
 Documentation not as good as commercial products
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Separation of roles

ACS keeps separate 3 roles/phases:
Development by software developers
Deployment by operations engineers
Runtime by system operators (clients)
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Development

 Developers write components and graphical user interfaces clients in C++, 
Java, or Python.

 ACS provides an integrated build environment based on application code 
modules. 

 Communication from an application to a component, and among components, 
uses ACS as middleware.

 No thinking about starting and stopping components, or on which machine 
they should run later.
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Deployment

 One or more containers get assigned to each computer.
 Components get assigned to containers.
 This location information is stored centrally in the Configuration Database 

(CDB).
 Other configuration data for 

containers and components are also 
stored in the CDB.

 There can be different deployments 
for unit tests, system tests, and 
various stages of the production 
system.
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Runtime

 ACS containers start and stop components (lifecycle management) as needed.
 Containers provide components and clients with references to other 

components.
 The Manager is the central intelligence point that keeps the system together. 

Components never see it directly.

18



Interfaces versus Implementations

The contract between components is specified by defining interfaces.
 First step: Identify objects

 Mount
 Camera
 Telescope
 Observation
 Exposure

 Second step:  Define interfaces
 Implementation comes later and is independent of interface 
 Deployment is also independent of interface definitions
 Interfaces shall be kept as stable as possible, but it must be possible to 

have them evolve when needed. 
 A formal interface definition language is needed
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One Interface, many implementations
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● ALMA
● APEX
● CTA / ASTRI
● SRT / DISCOS
● LLAMA (Argentina)
● Yebes Observatory RT40m (Spain)
● HESS
● …. Some other smaller or perspective projects ….

● Strong expertise in Italy

The ACS Community

APEX (Chile)

Yebes RT40m (Spain)

Sardinian
Radio
Telescope
(Italy)

CTA

ASTRI (Italy)
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● ALMA is leading ACS Maintenance (2 FTEs) and Development (Best 
Effort)

○ Focused on ALMA’s priorities
● Preparing releases and making them available to the community
● Receiving questions, requests and suggestions from community
● Receiving patches and integrating them in ACS
● Creating tickets, following up 

and resolving them
● Organization of community 

meetings and workshops

○ Last workshop: July 2020
About 80 participants

● Web Confluence page:
https://confluence.alma.cl/display/ICTACS/ACS+Community 

How does the community work today?
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● Increase Community Collaboration
○ Identify Current Community
○ Releases planning
○ Issue Tracking
○ Building / Packaging / Distributing

● Increase Community Engagement
○ More frequent community meetings
○ Better means of communication 

(Slack, Issue Tracking, etc.)
● Improve ACS Visibility

○ Website + Confluence
○ Improve Documentation
○ DockerHub Official Docker Image + Dev Images
○ ACS Community Slack Page

● Modernize the Framework
○ Replacement of technologies
○ New developments
○ Improve performance

ACS Community Objectives
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● By now an “old” product 
○ >20 years since inception
○ Is CORBA obsolete?

● Very stable and reliable: many years of continuous operation
● Actively supported by ALMA
● It is very difficult to engage the community in contributing
● Adoption pays off in relatively big projects
● What brakes adoption?

○ Steep initial learning curve. 
Higher level tools and more code generation would help.

○ Good documentation is critical
○ Not modular. Splitting in multiple independent packages would help
but where to get resources with a relatively small community?

● ACS is getting new energy with projects like CTA and ASTRI
● There is wide expertise in Italy: it might be useful for new projects
● How to choose between the available alternative options?

Conclusions and lessons learned
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Questions?
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