
ALMA Common Software
Introduction and Status

G.Chiozzi - ESO

• What is ACS?
• Why adopting a Technical Infrastruture Framework?
• Platforms
• ACS main characteristics
• The ACS Community
• Conclusion and lessons learned
• Questions and discussion

Contents

2

● ACS is a SW Technical Infrastructure for Control Systems.
● ACS provides the basic services for OO distributed computing.
● ACS is based on a Component/Container model
● Development started in 1999 for ALMA, as an open source project.
● ACS is still actively developed.
● ACS is used in a number of projects outside ALMA
● There is a community of users contributing to the development.

Applications

Error System Logging System Astro librariesDistributed
Object

Time SystemData channel2 - Core components

Command
System

Alarm System SamplingArchiving
System

Management and
Access Control3 - Services

ACS Application
Framework

FITS librariesUIF libraries Scripting4 - Hi-level APIs and
tools

...more to come...

CORBA Middleware ACEDevelopment
tools

1 - Base tools Device Drivers

What is ACS?

3

An observatory is a distributed system.

Servers and clients are distributed on different machines:
Possibly in different locations
With different purpose and functionality
With different requirements on performance and reliability

Why a Technical Infrastructure?

4

An observatory is a heterogeneous distributed system.

Servers and clients may use different:
Hardware
System software
Programming languages

Even development is distributed

Why a Technical Infrastructure? (2)

5

Transparent heterogeneous distribution is desirable:
Application developers should be unaware of the underlying server

architecture & vice-versa
 It should be possible to change the architecture of a server

transparently to the client
Application developers should not even need to know whether a

server is local or remote.

Why a Technical Infrastructure? (3)

6

Separation of functional from technical concerns is a strategy for

enabling the application developer to focus on the specific
aspects of the observatory

minimizing the technical effort

Functional and Technical Architecture

7

A Functional Software Architecture (FSA) is a model that identifies
enterprise functions, interactions and corresponding information
technology needs.
Software components/subsystems

Responsibilities
 Interfaces
Primary relationships and interactions

Physics and algorithms

It is developed by architect and subsystem leaders

based on user requirements

Functional Architecture

8

The functional architecture must be supported by a technical
architecture that describes (and implements) the technical aspects of
the software, like:
Programming model
Communication mechanisms and networking
Access to remote resources
Store and retrieve data (Database technology)
Manage security
Software deployment and life cycle

It is provided by the technical team
typically based on derived requirements

Technical Architecture

9

The key to the separation between
Functional and Technical Architecture

Purpose of a framework is to:

provide a programming model
ensure that the same thing is done in the same way in all the

development locations
provide common paradigm abstractions
mask heterogeneity
 satisfy performance, reliability and security requirements

Infrastructure Framework

10

All big projects have adopted an infrastructure framework
ACS in just one among several options, like
• ACS
• EPICS
• TANGO
• ESO VLT CCS
• ESO ELT CII
• ………

They are all rooted on the same basic principles described above.
They make specific technical choices and have an own history and a
rationale for adopting any of them in a project, or to create a new one.

Which framework to chose?

11

The ALMA Common Software (ACS) Framework

ACS provides the basic services needed for OO distributed computing.
Among these:
Transparent remote object invocation
Object deployment and location based on container/component

model
Distributed error and alarm handling
Distributed logging
Distributed events / publisher-subscriber
Configuration database

The ACS framework is based on CORBA and built on top of free
CORBA implementations and services.

Model driven development with code generation
12

Supported Platforms

Operating system:
RH Enterprise / Scientific Linux
CentOS
Other linux versions supported by external projects
Windows added also by external initiatives

Real-time:
VxWorks supported by and for APEX

 Languages: C++, Java, Python
CORBA middleware: TAO (C++), JacORB (Java), Omniorb (Python),

CORBA services.
Embedded ACS Container (Experimental)

13

LGPL and open source software

The strategy to provide common features to users is:
 Integrate as much as possible open-source tools, instead of implementing things.

 Do not reinvent the wheel
 Reuse experience of other projects
 Do not pay for licenses
 Support from user community

 Identify the best way to perform a task among the possibilities
 Wrap with convenience and unifying APIs

ACS is distributed under the LGPL license
Open source software may have drawbacks:

 Fast lifecycle and support only of the newest
 Free/commercial support
 Documentation not as good as commercial products

14

Separation of roles

ACS keeps separate 3 roles/phases:
Development by software developers
Deployment by operations engineers
Runtime by system operators (clients)

15

Development

 Developers write components and graphical user interfaces clients in C++,
Java, or Python.

 ACS provides an integrated build environment based on application code
modules.

 Communication from an application to a component, and among components,
uses ACS as middleware.

 No thinking about starting and stopping components, or on which machine
they should run later.

16

Deployment

 One or more containers get assigned to each computer.
 Components get assigned to containers.
 This location information is stored centrally in the Configuration Database

(CDB).
 Other configuration data for

containers and components are also
stored in the CDB.

 There can be different deployments
for unit tests, system tests, and
various stages of the production
system.

17

Runtime

 ACS containers start and stop components (lifecycle management) as needed.
 Containers provide components and clients with references to other

components.
 The Manager is the central intelligence point that keeps the system together.

Components never see it directly.

18

Interfaces versus Implementations

The contract between components is specified by defining interfaces.
 First step: Identify objects

 Mount
 Camera
 Telescope
 Observation
 Exposure

 Second step: Define interfaces
 Implementation comes later and is independent of interface
 Deployment is also independent of interface definitions
 Interfaces shall be kept as stable as possible, but it must be possible to

have them evolve when needed.
 A formal interface definition language is needed

19

One Interface, many implementations

20

● ALMA
● APEX
● CTA / ASTRI
● SRT / DISCOS
● LLAMA (Argentina)
● Yebes Observatory RT40m (Spain)
● HESS
● …. Some other smaller or perspective projects ….

● Strong expertise in Italy

The ACS Community

APEX (Chile)

Yebes RT40m (Spain)

Sardinian
Radio
Telescope
(Italy)

CTA

ASTRI (Italy)
21

● ALMA is leading ACS Maintenance (2 FTEs) and Development (Best
Effort)

○ Focused on ALMA’s priorities
● Preparing releases and making them available to the community
● Receiving questions, requests and suggestions from community
● Receiving patches and integrating them in ACS
● Creating tickets, following up

and resolving them
● Organization of community

meetings and workshops

○ Last workshop: July 2020
About 80 participants

● Web Confluence page:
https://confluence.alma.cl/display/ICTACS/ACS+Community

How does the community work today?

22

● Increase Community Collaboration
○ Identify Current Community
○ Releases planning
○ Issue Tracking
○ Building / Packaging / Distributing

● Increase Community Engagement
○ More frequent community meetings
○ Better means of communication

(Slack, Issue Tracking, etc.)
● Improve ACS Visibility

○ Website + Confluence
○ Improve Documentation
○ DockerHub Official Docker Image + Dev Images
○ ACS Community Slack Page

● Modernize the Framework
○ Replacement of technologies
○ New developments
○ Improve performance

ACS Community Objectives

23

● By now an “old” product
○ >20 years since inception
○ Is CORBA obsolete?

● Very stable and reliable: many years of continuous operation
● Actively supported by ALMA
● It is very difficult to engage the community in contributing
● Adoption pays off in relatively big projects
● What brakes adoption?

○ Steep initial learning curve.
Higher level tools and more code generation would help.

○ Good documentation is critical
○ Not modular. Splitting in multiple independent packages would help
but where to get resources with a relatively small community?

● ACS is getting new energy with projects like CTA and ASTRI
● There is wide expertise in Italy: it might be useful for new projects
● How to choose between the available alternative options?

Conclusions and lessons learned

24

Questions?

Acknowledgements
Most slides for this presentation are taken from the presentations given at the ACS Workshop 2020. ACS presentations were originally developed
by the ACS team, used in many training courses since 2004. Main contributors are (listed in alphabetical order): Jorge Avarias, Alessandro
Caproni, Gianluca Chiozzi, Jorge Ibsen, Bogdan Jeram, Thomas Jürgens, Matias Mora, Joseph Schwarz, Heiko Sommer plus many others

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East
Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the
Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council
of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of
Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on
behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on
behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified
leadership and management of the construction, commissioning and operation of ALMA.

	ALMA Common Software�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	The ALMA Common Software (ACS) Framework
	Supported Platforms
	LGPL and open source software
	Separation of roles
	Development
	Deployment
	Runtime
	Interfaces versus Implementations
	One Interface, many implementations
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

