
ALMA Common Software
Introduction and Status

G.Chiozzi - ESO

ACS is an open source project providing the technical infrastructure for the software
of the
Atacama Large Millimeter Array and several other projects.
ACS provides a framework for the development of distributed systems based
on the Component/Container paradigm and a set of basic services like:
• Transparent remote object invocation,
• Publisher/subscriber paradigm
• System deployment/administration and object location
• Distributed error and alarm handling,
• Distributed logging,
• Configuration database,
In this presentation I will give an overview of ACS: basic concepts, history, status of
collaboration and adoption, future perspectives, lessons learned.

1

2

• What is ACS?
• Why adopting a Technical Infrastruture Framework?
• Platforms
• ACS main characteristics
• The ACS Community
• Conclusion and lessons learned
• Questions and discussion

Contents

2

In this presentation I will first introduce briefly the concept if technical infrastructure
framework to provide a context for the ACS project.

Then I will introduce ACS and its main features and characteristics.

I will then spend a few words about the community of users of ACS, a part form
ALMA, and go for conclusions.

I hope we will remain with a few minutes for questions and a short discussion.

● ACS is a SW Technical Infrastructure for Control Systems.
● ACS provides the basic services for OO distributed computing.
● ACS is based on a Component/Container model
● Development started in 1999 for ALMA, as an open source project.
● ACS is still actively developed.
● ACS is used in a number of projects outside ALMA
● There is a community of users contributing to the development.

Applications

Error System Logging System Astro librariesDistributed
Object

Time SystemData channel2 - Core components

Command
System

Alarm System SamplingArchiving
System

Management and
Access Control

3 - Services

ACS Application
Framework

FITS librariesUIF libraries Scripting4 - Hi-level APIs and
tools

...more to come...

CORBA Middleware ACEDevelopment
tools

1 - Base tools Device Drivers

What is ACS?

3

3

An observatory is a distributed system.

Servers and clients are distributed on different machines:

Possibly in different locations

With different purpose and functionality

With different requirements on performance and reliability

Why a Technical Infrastructure?

4

The architecture of an observatory is very distributed.
Servers and clients need to be distributed in different locations inside and outside the
physical observatory where the telescope resides.
The different parts of the system have different purpose and functionality and
therefore have different requirements on performance and reliability.

If we take into account that parts of the system are dedicated to real time control of
hardware, coordination, database management, data analysis up to the GUIs on the
astronomer’s desktop, we see that this distribution involves something more than a
plain Distributed System.

4

An observatory is a heterogeneous distributed system.

Servers and clients may use different:

Hardware

System software

Programming languages

Even development is distributed

Why a Technical Infrastructure? (2)

5

What we really have is a Heterogeneous Distributed Systems, since the distribution
involves different:
•Hardware platforms and architectures. From field control devices like PLCs to real
time computers, to PCs of any kind on the desktops, we can have very different
hardware architectures (CPU, word size, alignment, memory available…)
•System software. Any of these machines can have a real time operating system,
Linux or other variants of Unix, Microsoft operating systems, PLCs.
•Programming Languages. Different programming languages are more suitable for
different application domains. For example, C and C++ are most suitable for real time
and CPU intensive applications, while Java fits well in coordination, high level or
GUI developments. Astronomers will want to write their observation scripts and
reduction procedures in high level scripting languages like Python.

5

Transparent heterogeneous distribution is desirable:

Application developers should be unaware of the underlying server

architecture & vice-versa

 It should be possible to change the architecture of a server

transparently to the client

Application developers should not even need to know whether a

server is local or remote.

Why a Technical Infrastructure? (3)

6

In order to achieve the “separation of concerns” objective, applications developers
have to be unaware of the architecture (hardware, software, programming language,
location) of the servers they interact with.
Having to deal explicitly with network communication protocols, byte order of
message data, connection reliability and similar problem would be a major burden on
the shoulders of the application developer.
The technical framework has to take up this responsibility and hide all these problems
to the functional developers.

It shall even be possible to fully replace the server with a different one without the
client noticing.

We could (and this has been often the case in past projects) keep the heterogeneous
domains separate. For example data analysis and control system could be
implemented using different and independent software infrastructures, but this
approach will lead to many problems in the interfaces. In the past, interfaces were
limited and this was not an important issue. But the level of integration needed
nowadays makes such a choice highly problematic.

The infrastructure Framework has to take care of these aspects of the system.

6

Separation of functional from technical concerns is a strategy for

enabling the application developer to focus on the specific

aspects of the observatory

minimizing the technical effort

Functional and Technical Architecture

7

Expressing the complexity in software of operating a mm-wavelength interferometer
is difficult enough for the developer without the additional burden of having to know
in detail the all the subfields of computer science associated with distributed object
architecture, such as remote access, network protocols, and database technology.

The separation of functional from technical concerns is a strategy for enabling the
application developer to concentrate on the physics, algorithms, and hardware details
of aperture synthesis interferometry, while a specialized, system-oriented team
provides an easy-to-use technical infrastructure.

The functional architecture further apportions these interferometry-related tasks
among subsystems that can be developed in relative independence from each other.

The technical architecture provides developers of these subsystems with simple and
standard ways to 1) access remote resources; 2) store and retrieve data; 3) manage
security needs; and 4) communicate asynchronously with other subsystems and
components.

7

A Functional Software Architecture (FSA) is a model that identifies

enterprise functions, interactions and corresponding information

technology needs.

Software components/subsystems

Responsibilities

 Interfaces

Primary relationships and interactions

Physics and algorithms

It is developed by architect and subsystem leaders

based on user requirements

Functional Architecture

8

The functional architecture is built based on the user requirements.
The functionality that needs to be implemented is assigned to components/subsystems
and the architecture describes the responsibilities of each subsystem and the interfaces
that are exposed to the other subsystems or to the external world.

Then the relationships between the subsystems (i.e. how these interfaces are used
when asking reciprocally services) are described.

The functionality must be implemented according to the physics of the system and
must implement specific algorithms that must be described in this architecture. For
example scheduling algorithms, control algorithms, data reduction strategies are all
part of the functional architecture.

Another essential driving factor is the actual deployment and distribution of the
hardware that must be controlled by the software. For example, the physical
deployment of motors and sensors and the physical connection of the electronics to
the control computers affects the functional architecture of the system. Or the location
of the data archives and of the CPU factories for data reduction.

8

The functional architecture must be supported by a technical

architecture that describes (and implements) the technical aspects of

the software, like:

Programming model

Communication mechanisms and networking

Access to remote resources

Store and retrieve data (Database technology)

Manage security

Software deployment and life cycle

It is provided by the technical team

typically based on derived requirements

Technical Architecture

9

The “functional architecture” must be supported by a “technical architecture” that
describes (and implements) the technical aspects of the software, like the
communication protocols used, the threading model, the software deployment
(process handling, distribution, activation and deactivation).

The requirements for the technical architecture are mostly derived requirements.

While the user requirements are the basis for the development of the functional
architecture, we derive most of the technical requirements from the functional
architecture itself: the technical architecture shall enable us to implement the
functional architecture.

9

The key to the separation between

Functional and Technical Architecture

Purpose of a framework is to:

provide a programming model

ensure that the same thing is done in the same way in all the

development locations

provide common paradigm abstractions

mask heterogeneity

 satisfy performance, reliability and security requirements

Infrastructure Framework

10

The key to reach this objective is to adopt a Software Framework that provides a
consistent infrastructure for the whole observatory. On one side the framework has to
satisfy all the requirements of performance, reliability and security derived from the
functional architecture. On the other side it must hide as much as possible its own
internal complexity to the subsystem developers and provide them with a clear and
streamlined programming model.
What can be a definition of software framework?
The current definition from the Wikipedia
(http://en.wikipedia.org/wiki/Software_framework) is:

A software framework is "the skeleton of an application that can be customized by
an application developer”. Like software libraries, it aids the software developer by
containing source code that solves problems for a given domain and provides a simple
API. However, while a code library acts like a servant to other programs, software
frameworks reverse the master-servant relationship. This reversal, called “inversion of
control”, is the essence of software frameworks.
Frameworks are designed with the intent of facilitating software development, by
allowing designers and programmers to spend more time on meeting software
requirements rather than dealing with the more tedious low level details of providing a
working system. However, there are common complaints that using frameworks adds
to “code bloat”, and that a result of competing and complementary frameworks is that
one trades time spent on programming and design for time spent on learning

10

frameworks. Having a good framework in place allows the developers to spend more
time concentrating on the business-specific problem at hand rather than on the
plumbing code behind it. Also a framework will limit the choices during development,
so it increases productivity, specifically in big and complex systems.

However you can find many definitions pushing more of less on certain aspects of the
concept of framework and even the definition in the Wikipedia has been quite volatile.
The E-ELT project has written a Technical Requirements document for the TCS
Software Framework. This document is used for the evaluation of the different
alternatives. This document states that:

The role of the Software Framework product is to allow the control software
applications to communicate in this distributed environment and to enforce a coherent
integrated system. The Framework hides the operating systems from the application,
provides common services and provides an API. The Framework may or may not
include dedicated tools to generate applications, e.g. code generators, so called
Application Framework. It is emphasized that the priority in this document is on the
support structure.
The justification of using a Framework is to make application development easier, by
providing common programming abstractions, by masking heterogeneity and the
distribution of the underlying hardware and operating systems, and by hiding low-
level programming details. The advantages of using a Framework come with potential
caveats. These shall be taken into account when selecting and/or developing a
Framework.

10

All big projects have adopted an infrastructure framework

ACS in just one among several options, like

• ACS

• EPICS

• TANGO

• ESO VLT CCS

• ESO ELT CII

• ………

They are all rooted on the same basic principles described above.

They make specific technical choices and have an own history and a

rationale for adopting any of them in a project, or to create a new one.

Which framework to chose?

11

11

The ALMA Common Software (ACS) Framework

ACS provides the basic services needed for OO distributed computing.

Among these:

Transparent remote object invocation

Object deployment and location based on container/component

model

Distributed error and alarm handling

Distributed logging

Distributed events / publisher-subscriber

Configuration database

The ACS framework is based on CORBA and built on top of free

CORBA implementations and services.

Model driven development with code generation
12

ACS provides the basic services needed for object oriented distributed computing
using different programming languages. Among these are:

Transparent remote object invocation
Object deployment and location based on a container/component model
Distributed error and alarm handling
Distributed logging
Distributed events

The ACS framework is based on CORBA and built on top of free CORBA
implementations.
Free software is extensively used wherever possible, to avoid “re-inventing the
wheel”.
ACS itself is publicly available under the Lesser GNU Public License (LGPL) license
ACS’s primary platform is Red-Hat Enterprise Linux, but it works and is used also on
other Linux variants.
Real time development is supported on Real Time Linux (for ALMA) and VxWorks
(for other projects).
Development is supported in C++, Java and Python. Any other language with a
CORBA mapping can be used, if needed. Coherent support of multiple programming
languages is one of the key motivations for the implementation of ACS.

12

Supported Platforms

Operating system:

RH Enterprise / Scientific Linux

CentOS

Other linux versions supported by external projects

Windows added also by external initiatives

Real-time:

VxWorks supported by and for APEX

 Languages: C++, Java, Python

CORBA middleware: TAO (C++), JacORB (Java), Omniorb (Python),

CORBA services.

Embedded ACS Container (Experimental)
13

The platforms and development environments supported by ACS are decided for each
release, based on the requests coming from the user’s base.
Our main development platform is Linux, while real time systems run under RTAI and
VxWorks.
• Linux (RH Enterprise and Scientific Linux 4) development and run time
• RTAI (Linux Kernel version 2.6.10, RTAI 3.2)
• Cross development for VxWorks (Tornado 2.5) from Linux, upload on VxWorks run
time and debugging
Support for small-footprint run time only installations is foreseen.
Other platforms are supported by external groups.

13

LGPL and open source software

The strategy to provide common features to users is:
 Integrate as much as possible open-source tools, instead of implementing things.

 Do not reinvent the wheel

 Reuse experience of other projects

 Do not pay for licenses

 Support from user community

 Identify the best way to perform a task among the possibilities

 Wrap with convenience and unifying APIs

ACS is distributed under the LGPL license

Open source software may have drawbacks:
 Fast lifecycle and support only of the newest

 Free/commercial support

 Documentation not as good as commercial products

14

One of the first key decisions for the development of the ALMA software has been the
one of embracing the free-software philosophy.
The problems we face in the design of our system are similar to the problems
encountered by other projects,
The adoption of commercial packages ties one to specific vendors, often with license
costs that would be prohibitive for the budget of our project and with the high risk of
being affected by changes in the commercial strategy of the vendor.
Therefore we decided to build our software infrastructure by taking advantage of the
experience of other projects, using as much as possible freely available and at the
same time widely used software.
A wide open software community promises also good and fast support through the
usage of newsgroups and discussion forums. Open community forums are very active
and replies come very often within a few hours.
The lifecycle of open software is very fast and there is no or little support for older
versions.
When a bug is identified, the fix usually arrives very quickly, but it is almost always
tied to the latest, "bleeding-edge" version of the software. Patches to previous versions
are rare.
Accepting the fix thus often means accepting new features, backward
incompatibilities and, perhaps, new bugs. The alternative is patching the old code
ourselves (this is possible since the source code is freely available).
When an open software product really becomes mainstream the resources that the

14

authors would have to put in support become quite substantial. We have seen that very
often at this point a company is founded to provide support and consultancy as a way
to pay the costs. This corresponds normally to a sharp decline in the contribution of
the core authors to the newsgroups, in order to convince the users to purchase support
from the company.
Documentation for free software is very different from the documentation you
normally expect from commercial products. First of all it is very different from
package to package. Detailed and comprehensive user and reference manuals are
typically absent. Very often we end up having to look inside the source code.
We have seen for example, that the costs during the past year for keeping pace with
real-time Linux releases and having a stable system have been much higher than
originally foreseen. We have been often forced to take versions of the real-time Linux
development software that is "hot off the press," just to get basic features running,
although reported problems have been fixed quite promptly.

14

Separation of roles

ACS keeps separate 3 roles/phases:

Development by software developers

Deployment by operations engineers

Runtime by system operators (clients)

15

15

Development

 Developers write components and graphical user interfaces clients in C++,

Java, or Python.

 ACS provides an integrated build environment based on application code

modules.

 Communication from an application to a component, and among components,

uses ACS as middleware.

 No thinking about starting and stopping components, or on which machine

they should run later.

16

•Most ALMA software is written as Components, which have no GUI.
•The concept of Container / Component will be explained in separate presentations.
•Mainly the scientists (writing Observation Projects or researching the archive), as
well as the ALMA operators, will see GUI clients. These are written by the ALMA
subsystems ObsPrep, Exec, Pipeline/QuickLook, and Archive. ACS provides an
optional GUI framework called “Abeans” which is particularly aimed at writing
control applications GUIs. We will not touch on GUIs in the ACS course though.
•ACS allows to easily write distributed applications. The application developer has to
write software that conforms to the standards. The reward is an application that can
later run on one or many machines, without coding overhead for remote
communication or starting and stopping the system.

16

Deployment

 One or more containers get assigned to each computer.

 Components get assigned to containers.

 This location information is stored centrally in the Configuration Database

(CDB).

 Other configuration data for

containers and components are also

stored in the CDB.

 There can be different deployments

for unit tests, system tests, and

various stages of the production

system.

17

Details on container location information and container startup:
• for the system to work, it is good enough to start containers by hand on any machine.
They dynamically add themselves. This is only done for tests though.
• In the real ALMA, the central starter application “Executive” starts containers on
various machines

•either based on a custom configuration file that assigns containers to
machines,
•or based on container-machine location data from the CDB from which the
manager can start containers.

17

Runtime

 ACS containers start and stop components (lifecycle management) as needed.

 Containers provide components and clients with references to other

components.

 The Manager is the central intelligence point that keeps the system together.

Components never see it directly.

18

Details on container location information and container startup:
• for the system to work, it is good enough to start containers by hand on any machine.
They dynamically add themselves. This is only done for tests though.
• In the real ALMA, the central starter application “Executive” starts containers on
various machines, before any application software gets run. Exec maintains a
configuration file that assigns containers to machines.
• Soon the CDB will optionally include container-machine location data.
•Services:

•Error propagation across processes
•Logging
•Alarm
•Event-based notification
•Bulk data transfer
•Other services can be plugged into the container framework if necessary (e.g.
security)

18

Interfaces versus Implementations

The contract between components is specified by defining interfaces.

 First step: Identify objects

Mount

 Camera

 Telescope

 Observation

 Exposure

 Second step: Define interfaces

 Implementation comes later and is independent of interface

 Deployment is also independent of interface definitions

 Interfaces shall be kept as stable as possible, but it must be possible to

have them evolve when needed.

 A formal interface definition language is needed
19

The contract between the components is specified by clearly defining interfaces.

As a first step in the analysis and design of the system we have to identify the objects
that will interact together.
Typically this will be done in layers.
Per each subsystem we will identify the outer layer of objects that will be used in the
interactions between subsystems.
Going deeper in the analysis we will identify recursively internal layers of objects.
Once the objects have been identified, we will have to define their interfaces.
At this point we should not care about implementation and deployment.
It shall be possible to implement the interfaces later on using different programming
languages and different architectures, as well as deploying the implementation in
different ways.
The absolute separation between interface and implementation is essential to
interoperability and scalability.
The best way to define interfaces if by using an implementation neutral but formal
interface definition language that will be mapped in the implementation languages
later on. Using a formal language is very important to avoid surprises and
inconsistencies when integrating subsystems developed by different teams. Using just
a textual Interface Control Document (ICD) can very easily lead to problems.
The clients of an object know and see only its interface and the interface shields
completely the implementation underneath.
This makes it possible first of all to implement a servant in any language.
But it also means that it is possible:

19

•To have different implementations for the same interface, if needed in multiple
languages.
For example one could provide a mock up implementation in Python for testing and

an high performance servant in C++ for the final real time system.
•To have one implementation serve multiple interfaces.
For example, access to a legacy system could be done defining the interfaces for each
subsystem but implementing only one generic servant (for example a sort of protocol
converter) able to implement all of them. Another example is a CORBA interface to
access an object (or also relational) database. It is not necessary to provide the
implementation for each object type (or table) in the database. One single
implementation is able to “incarnate” dynamically all interfaces.
•To have one physical instance of a Servant to represent multiple logical instances. Or
the other way around. Or any intermediate situation, based on scheduling and load
balancing algorithms.

19

One Interface, many implementations

20

Details on container location information and container startup:
• for the system to work, it is good enough to start containers by hand on any machine.
They dynamically add themselves. This is only done for tests though.
• In the real ALMA, the central starter application “Executive” starts containers on
various machines, before any application software gets run. Exec maintains a
configuration file that assigns containers to machines.
• Soon the CDB will optionally include container-machine location data.
•Services:

•Error propagation across processes
•Logging
•Alarm
•Event-based notification
•Bulk data transfer
•Other services can be plugged into the container framework if necessary (e.g.
security)

20

Questions?

Acknowledgements
Most slides for this presentation are taken from the presentations given at the ACS Workshop 2020. ACS presentations were originally developed
by the ACS team, used in many training courses since 2004. Main contributors are (listed in alphabetical order): Jorge Avarias, Alessandro
Caproni, Gianluca Chiozzi, Jorge Ibsen, Bogdan Jeram, Thomas Jürgens, Matias Mora, Joseph Schwarz, Heiko Sommer plus many others

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East
Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the
Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council
of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of
Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on
behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on
behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified
leadership and management of the construction, commissioning and operation of ALMA.

25

